
Transactions, Views, Indexes

Controlling Concurrent BehaviorControlling Concurrent Behavior
Virtual and Materialized Views

Speeding Accesses to Data

1

Why Transactions?

Database systems are normally being
accessed by many users or processes at
the same time.

Both queries and modifications.

Unlike operating systems whichUnlike operating systems, which
support interaction of processes, a
DMBS needs to keep processes from
troublesome interactions.

2

Example: Bad Interaction

You and your domestic partner each
take $100 from different ATM’s at about
the same time.

The DBMS better make sure one account
deduction doesn’t get lostdeduction doesn t get lost.

Compare: An OS allows two people to
dit d t t th ti Ifedit a document at the same time. If

both write, one’s changes get lost.
3

Transactions

Transaction = process involving
database queries and/or modification.
Normally with some strong propertiesNormally with some strong properties
regarding concurrency.
F d i SQL f i lFormed in SQL from single statements
or explicit programmer control.p p g

4

ACID T tiACID Transactions

ACID transactions are:
Atomic : Whole transaction or none is doneAtomic : Whole transaction or none is done.
Consistent : Database constraints preserved.
Isolated : It appears to the user as if only one
process executes at a time.
Durable : Effects of a process survive a crash.

Optional: weaker forms of transactions areOptional: weaker forms of transactions are
often supported as well.

5

COMMIT

The SQL statement COMMIT causes a
transaction to complete.

It’s database modifications are nowIt s database modifications are now
permanent in the database.

6

ROLLBACK

The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.g

No effects on the database.

Failures like division by 0 or aFailures like division by 0 or a
constraint violation can also cause
rollback, even if the programmer does
not request it.

7

q

Example: Interacting Processes

Assume the usual
S ll (b l d i) l ti dSells(bar,lemonade,price) relation, and
suppose that Joe’s Bar sells only Bud for
$2 50 d Mill f $3 00$2.50 and Miller for $3.00.
Sally is querying Sells for the highest and y q y g g
lowest price Joe charges.
Joe decides to stop selling Bud andJoe decides to stop selling Bud and
Miller, but to sell only Heineken at $3.50.

8

Sally’s Program

Sally executes the following two SQL
statements called (min) and (max) to
help us remember what they do.p y

(max) SELECT MAX(price) FROM Sells
WHERE b ’J ’’ B ’WHERE bar = ’Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells(min) SELECT MIN(price) FROM Sells
WHERE bar = ’Joe’’s Bar’;

9

Joe’s Program

At about the same time, Joe executes the
following steps: (del) and (ins).

(del) DELETE FROM Sells(del) DELETE FROM Sells
WHERE bar = ’Joe’’s Bar’;

(ins) INSERT INTO Sells
VALUES(’Joe’’s Bar’ ’Heineken’ 3 50);VALUES(Joe s Bar , Heineken , 3.50);

10

Interleaving of Statements

Although (max) must come before
(min), and (del) must come before
(ins), there are no other constraints on (),
the order of these statements, unless
we group Sally’s and/or Joe’swe group Sally s and/or Joe s
statements into transactions.

11

Example: Strange Interleaving

Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe’s Prices: {2 50 3 00} {3 50}{2 50 3 00}Joe s Prices:
Statement:

{2.50,3.00}

(del) (ins)

{3.50}

(min)

{2.50,3.00}

(max)

Result: 3.503.00

Sally sees MAX < MIN!
12

Fixing the Problem by UsingFixing the Problem by Using
TransactionsTransactions

If we group Sally’s statements
(max)(min) into one transaction, then
she cannot see this inconsistency.y
She sees Joe’s prices at some fixed
timetime.

Either before or after he changes prices, or
in the middle, but the MAX and MIN are
computed from the same prices.

13

Another Problem: Rollback

Suppose Joe executes (del)(ins), not as
a transaction, but after executing these
statements, thinks better of it and ,
issues a ROLLBACK statement.
If Sally executes her statements afterIf Sally executes her statements after
(ins) but before the rollback, she sees a
value, 3.50, that never existed in the
database.

14

Solution

If Joe executes (del)(ins) as a
transaction, its effect cannot be seen by
others until the transaction executes
COMMIT.

If the transaction executes ROLLBACKIf the transaction executes ROLLBACK
instead, then its effects can never be
seenseen.

15

Isolation Levels

SQL defines four isolation levels =
choices about what interactions are
allowed by transactions that execute at y
about the same time.
Only one level (“serializable”) ACIDOnly one level (serializable) = ACID
transactions.
Each DBMS implements transactions in
its own way.

16

its own way.

Choosing the Isolation Level

Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

where X =where X =
1. SERIALIZABLE
2. REPEATABLE READ
3. READ COMMITTED3. READ COMMITTED
4. READ UNCOMMITTED

17

READ UNCOMMITTED

This is the lowest possible isolation level.
S i ll d di d hi l l iSometimes called dirty read, this level permits
a transaction to read rows that have not yet
b i d U i hi i l i l lbeen committed. Using this isolation level
might improve performance, but the idea of

t i i d t h d b thone user retrieving data changed by another
user, which might not actually be committed,
i ll t blis usually unacceptable.

18
MySQL Stored Procedure Programming
By Steven Feuerstein, Guy Harrison

READ COMMITTED

At this isolation level, only committed rows
b b t ti F thcan be seen by a transaction. Furthermore,

any changes committed after a statement
ti t b Fcommences execution cannot be seen. For

example, if you have a long-running SELECT
t t t i i A th t i f thstatement in session A that queries from the

SELLS table, and session B inserts a row into
SELLS hil A' i till i th tSELLS while A's query is still running, that
new row will not be visible to the SELECT.

19
MySQL Stored Procedure Programming
By Steven Feuerstein, Guy Harrison

REPEATABLE READ

At this isolation level, no changes to the
d t b th t d b th idatabase that are made by other sessions
since the transaction commenced can be

ithi th t ti til thseen within the transaction, until the
transaction is committed or rolled back
(ll d) Thi th t if t(cancelled). This means that if you re-execute
a SELECT within your transaction, it will
l h th lt (th thalways show the same results (other than

any updates that occurred in the same
t ti)transaction).

20MySQL Stored Procedure Programming
By Steven Feuerstein, Guy Harrison

SERIALIZABLE

At this isolation level, every transaction is
l t l i l t d th t t ticompletely isolated so that transactions

behave as if they had executed serially, one
ft th th I d t hi thi thafter the other. In order to achieve this, the

RDBMS will typically lock every row that is
d th i t dif th tread, so other sessions may not modify that

data until the transaction is done with it. The
l k l d h it llocks are released when you commit or cancel
the transaction.

21
MySQL Stored Procedure Programming
By Steven Feuerstein, Guy Harrison

Serializable Transactions

If Sally = (max)(min) and Joe =
(del)(ins) are each transactions, and
Sally runs with isolation level y
SERIALIZABLE, then she will see the
database either before or after Joedatabase either before or after Joe
runs, but not in the middle.

22

Isolation Level Is Personal Choice

Your choice, e.g., run serializable,
affects only how you see the database,
not how others see it.
Example: If Joe Runs serializable, but
Sally doesn’t then Sally might see noSally doesn t, then Sally might see no
prices for Joe’s Bar.

i.e., it looks to Sally as if she ran in the
middle of Joe’s transaction.

23

Read-Commited Transactions

If Sally runs with isolation level READ
COMMITTED, then she can see only
committed data, but not necessarily the , y
same data each time.
Example: Under READ COMMITTEDExample: Under READ COMMITTED,
the interleaving (max)(del)(ins)(min) is
allowed, as long as Joe commits.

Sally sees MAX < MIN.
24

y

Repeatable-Read Transactions

Requirement is like read-committed,
plus: if data is read again, then
everything seen the first time will be y g
seen the second time.

But the second and subsequent reads mayBut the second and subsequent reads may
see more tuples as well.

25

Example: Repeatable Read

Suppose Sally runs under REPEATABLE
READ, and the order of execution is
(max)(del)(ins)(min).()()()()

(max) sees prices 2.50 and 3.00.
(min) can see 3 50 but must also see 2 50(min) can see 3.50, but must also see 2.50
and 3.00, because they were seen on the
earlier read by (max)earlier read by (max).

26

Read Uncommitted

A transaction running under READ
UNCOMMITTED can see data in the
database, even if it was written by a , y
transaction that has not committed
(and may never)(and may never).
Example: If Sally runs under READ
UNCOMMITTED, she could see a price
3.50 even if Joe later aborts.

27

ViViews

A view is a relation defined in terms
of stored tables (called base tables)of stored tables (called base tables)
and other views.
Two kinds:

1. Virtual = not stored in the database; just tua ot sto ed t e database; just
a query for constructing the relation.

2 Materialized = actually constructed and2. Materialized = actually constructed and
stored.

28

D l i ViDeclaring Views

Declare by:
CREATE [MATERIALIZED] VIEWCREATE [MATERIALIZED] VIEW

<name> AS <query>;
Default is virtual.

29

Example: View Definition

CanDrink(drinker, lemonade) is a view
“containing” the drinker lemonade pairs suchcontaining the drinker-lemonade pairs such
that the drinker frequents at least one bar that
serves the lemonade:serves the lemonade:

CREATE VIEW CanDrink ASCREATE VIEW CanDrink AS
SELECT drinker, lemonade
FROM F t S llFROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

30

Example: Accessing a View

Query a view as if it were a base table.
Also: a limited ability to modify views if it
makes sense as a modification of one
underlying base table.

Example query:Example query:
SELECT lemonade FROM

CanDrink
WHERE drinker = ’Sally’;

31

y ;

Triggers on Views

Generally, it is impossible to modify a virtual
i b it d ’t i tview, because it doesn’t exist.

But an INSTEAD OF trigger lets us interpret
view modifications in a way that makes
sense.
Example: View Synergy has (drinker,
lemonade, bar) triples such that the bar ,) p
serves the lemonade, the drinker frequents
the bar and likes the lemonade.

32

Example: The View

CREATE VIEW Synergy AS
Pick one copy of
each attribute

SELECT Likes.drinker, Likes.lemonade,
Sells barSells.bar
FROM Likes, Sells, Frequents
WHERE Likes.drinker = Frequents.drinker

AND Likes lemonade = Sells lemonadeAND Likes.lemonade = Sells.lemonade
AND Sells.bar = Frequents.bar;

Natural join of Likes
33

Natural join of Likes,
Sells, and Frequents

Interpreting a View Insertion

We cannot insert into Synergy --- it is a
virtual view.
But we can use an INSTEAD OF triggerBut we can use an INSTEAD OF trigger
to turn a (drinker, lemonade, bar) triple
into three insertions of projected pairsinto three insertions of projected pairs,
one for each of Likes, Sells, and
Frequents.

Sells.price will have to be NULL.
34

p

The Trigger

CREATE TRIGGER ViewTrig
INSTEAD OF INSERT ON SynergyINSTEAD OF INSERT ON Synergy
REFERENCING NEW ROW AS n
FOR EACH ROWFOR EACH ROW
BEGIN

INSERT INTO LIKES VALUES(n.drinker, n.lemonade);INSERT INTO LIKES VALUES(n.drinker, n.lemonade);
INSERT INTO SELLS(bar, lemonade) VALUES(n.bar, n.

lemonade);
INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;

35

Materialized Views

Problem: each time a base table
changes, the materialized view may
change.g

Cannot afford to recompute the view with
each changeeach change.

Solution: Periodic reconstruction of the
t i li d i hi h i th imaterialized view, which is otherwise

“out of date.”
36

Example: A Data Warehouse

Wal-Mart stores every sale at every
store in a database.
Overnight the sales for the day areOvernight, the sales for the day are
used to update a data warehouse =
materialized views of the salesmaterialized views of the sales.
The warehouse is used by analysts to y y
predict trends and move goods to
where they are selling best.

37

where they are selling best.

Indexes

Index = data structure used to speed
access to tuples of a relation, given
values of one or more attributes.
Could be a hash table, but in a DBMS it
is always a balanced search tree withis always a balanced search tree with
giant nodes (a full disk page) called a
B-tree.

38

Declaring Indexes

No standard!
Typical syntax:

CREATE INDEX LemonadeInd ONCREATE INDEX LemonadeInd ON
Lemonades(manf);

CREATE INDEX SellInd ON
Sells(bar, lemonade);(,);

39

Using Indexes

Given a value v, the index takes us to
only those tuples that have v in the
attribute(s) of the index.()
Example: use LemonadeInd and SellInd
to find the prices of lemonadesto find the prices of lemonades
manufactured by Pete’s and sold by
Joe. (next slide)

40

Using Indexes (2)Using Indexes --- (2)

SELECT price FROM Lemonades, Sells
WHERE manf = ’Pete’’s’ ANDWHERE manf Pete s AND

Lemonades.name = Sells.lemonade
ANDAND
bar = ’Joe’’s Bar’;

1. Use LemonadeInd to get all the lemonades
made by Pete’s.

2. Then use SellInd to get prices of those
lemonades, with bar = ’Joe’’s Bar’

41

,

Database Tuning

A major problem in making a database
run fast is deciding which indexes to
create.
Pro: An index speeds up queries that can
use ituse it.
Con: An index slows down all
modifications on its relation because the
index must be modified too.

42

index must be modified too.

Example: Tuning

Suppose the only things we did with our
l d d t blemonades database was:

1. Insert new facts into a relation (10%).
2. Find the price of a given lemonade at a given

bar (90%).

Then SellInd on Sells(bar, lemonade) would
be wonderful, but LemonedeInd on
Lemonades(manf) would be harmful.

43

Tuning Advisors

A major research thrust.
Because hand tuning is so hard.

An advisor gets a query load e g :An advisor gets a query load, e.g.:
1. Choose random queries from the history

of queries run on the database orof queries run on the database, or
2. Designer provides a sample workload.

44

Tuning Advisors --- (2)

The advisor generates candidate
indexes and evaluates each on the
workload.

Feed each sample query to the query
optimizer which assumes only this oneoptimizer, which assumes only this one
index is available.
Measure the improvement/degradation inMeasure the improvement/degradation in
the average running time of the queries.

45

