Introduction to SQL

Select-From-Where Statements
Multirelation Queries
Subqgueries

€ SQL is a very-high-level language.
+ Say “what to do” rather than “how to do it.”

* Avoid a lot of data-manipulation details
needed in procedural languages like C++ or
Java.

@ Database management system figures
out “best” way to execute query.

+ Called “query optimization.”

Select-From-Where Statements

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of
the tables

Our Running Example

@ All our SQL queries will be based on the
following database schema.

+ Underline indicates key attributes.
Lemonades(name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, lemonade)
Sells(bar, lemonade, price)
Frequents(drinker, bar)

Example

€ Using Lemonades(name, manf), what
lemonades are made by Anheuser-Busch?

SELECT name
FROM Lemonades
WHERE manf = *Anheuser-Busch?;

Result of Query

name
Buc
Bud Lite
Michelob

The answer Is a relation with a single attribute,
name, and tuples with the name of each
lemonade by Anheuser-Busch, such as Bud.

6

Meaning of Single-Relation Query

€ Begin with the relation in the FROM
clause.

@ Apply the selection indicated by the
WHERE clause.

@ Apply the extended projection indicated
by the SELECT clause.

Operational Semantics

Nname

manf

Bud

Anheuser-Busch

» Include t.name

Tuple-variable ¢

loops over all
tuples

In the result, If so

Check if
Anheuser-Busch

Operational Semantics --- General

@ Think of a tuple variable visiting each
tuple of the relation mentioned in FROM.

@ Check if the “current” tuple satisfies the
WHERE clause.

@ If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple.

* In SELECT clauses

& \When there is one relation in the FROM
clause, * In the SELECT clause stands for
“all attributes of this relation.”

¢ : Using Lemonades(name, manf):
SELECT *

FROM Lemonades
WHERE manf = *Anheuser-Busch’;

10

Result of Query:

name manf

Buc Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

Now, the result has each of the attributes

of Lemonades.

11

Renaming Attributes

¢ If you want the result to have different
attribute names, use “AS <new name>" to
rename an attribute.

¢ : Using Lemonades(name, manf):
SELECT name AS lemonade, manf

FROM Lemonades
WHERE manf = *Anheuser-Busch’

12

Result of Query:

lemonade manf

Buc Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

13

Expressions in SELECT Clauses

€ Any expression that makes sense can
appear as an element of a SELECT clause.

¢ : Using Sells(bar, lemonade,
price):
SELECT bar, lemonade,
price*114 AS pricelnYen

FROM Sells;

14

Result of Query

bar lemonade pricelnYen
Joe’s Bud 285
Sue’s Miller 342

15

. Constants as Expressions

& Using Likes(drinker, lemonade):

SELECT drinker,

>lI1kes Bud” AS wholLi1kesBud
FROM Likes
WHERE lemonade = “Bud?’;

16

Result of Query

drinker | whoLikesBud
Sally likes Bud
Fred likes Bud

17

. Information Integration

& \We often build “data warehouses” from
the data at many “sources.”

® Suppose each bar has its own relation
Menu(lemonade, price) .

€ To contribute to Sells(bar, lemonade,
price) we need to query each bar and
iInsert the name of the bar.

18

Information Integration --- (2)

@ For instance, at Joe's Bar we can issue
the query:

SELECT *Joe’’s Bar’, lemonade,
price

FROM Menu;

19

Complex Conditions in WHERE
Clause

® Boolean operators AND, OR, NOT.
€ Comparisons =, <>, <, >, <=, >=,

+ And many other operators that produce
boolean-valued results.

20

. Complex Condition

& Using Sells(bar, lemonade, price), find the
price Joe’s Bar charges for Bud:

SELECT price

FROM Sells

WHERE bar = ”Joe””s Bar” AND
lemonade = *Bud?;

21

Patterns

€ A condition can compare a string to a

pattern by:

* <Attribute> LIKE <pattern> or

<Attribute> NOT LI

KE <pattern>

‘/D ttern baQ'O C

any string”;

l.l Illg VVIl.II /0 —
character.”

22

. LIKE

€ Using Drinkers(name, addr, phone) find
the drinkers with exchange 555:

SELECT name
FROM Drinkers
WHERE phone LIKE “%555- e

23

NULL Values

@ Tuples in SQL relations can have NULL
as a value for one or more components.

® Meaning depends on context. Two
COmmon Cases:

* Missing value . e.g., we know Joe’s Bar has
some address, but we don’t know what It Is.

* [napplicable . e.g., the value of attribute
spouse for an unmarried person.

24

Comparing

NULL'’s to Values

@ The logic of conditions in SQL is really 3-
valued logic: TRUE, FALSE, UNKNOWN.

€ Comparing any
itself) with NUL

value (including NULL
_ yields UNKNOWN.

@A tupleisinao
WHERE clause |
UNKNOWN).

uery answer Iff the
s TRUE (not FALSE or

25

Three-Valued Logic

& To understand how AND, OR, and NOT
work in 3-valued logic, think of TRUE =
1, FALSE = 0, and UNKNOWN = 154,

@ AND = MIN; OR = MAX, NOT(X) = 1-x.
‘ .

TRUE AND (FALSE OR NOT(UNKNOWN))
= MIN(L, MAX(O, (1 - ¥%2))) =

MIN(L, MAX(0, ¥%)) = MIN(, %2) = ¥.

26

Surprising

@ From the following Sells relation:

bar lemonade| price
Joe’s Bar| Bud NULL
SELECT bar
FROM Sells

WHERE price < 2.00 OR price >= 2.00;

UNKNOWN

UNKNOWN

UNKNOWN

27

b\ = VAIOS I—
I—
|

NAA~A Y \/Aalii~And | A
n\cCdoVull. £2=-vAadiucu LAavyv
3-Valued Laws

€ Some common laws, like commutativity
of AND, hold in 3-valued logic.

€ But not others, e.g., the /aw of the
excluded middle . p OR NOT p = TRUE.
* When p = UNKNOWN, the left side Is
MAX(Y2, (1 -12)) =12 1=1.

28

Multirelation Queries

@ Interesting queries often combine data
from more than one relation.

€® We can address several relations in one
qguery by listing them all in the FROM
clause.

Distinguish attributes of the same name
by “<relation>.<attribute>" .

29

AIIAIIAN .A | Vo %

- Joining Two Relations

€ Using relations Likes(drinker, lemonade)
and Frequents(drinker, bar), find the
lemonades liked by at least one person who
frequents Joe’s Bar.

SELECT lemonade
FROM Likes, Frequents
WHERE bar = *Joe”’s Bar” AND

Frequents.drinker =
Likes.drinker;

30

Formal Semantics

€ Almost the same as for single-relation
gueries:

1.

N

Start with the product of all the relations
In the FROM clause.

Annh/ tha calar
AMNPIY UITC SCICU

WHERE clause.

Project onto the list of attributes and
expressions in the SELECT clause.

inNn ~ronditinn fr
Uil CUINUIUUIL 11

31

Operational Semantics

€ Imagine one tuple-variable for each
relation in the FROM clause.

* These tuple-variables visit each
combination of tuples, one from each
relation.

@ If the tuple-variables are pointing to
tuples that satisfy the WHERE clause,
send these tuples to the SELECT clause.

32

tvl

Example

drinker

bar

drinker

lemonade

tv2

Sally x
N

Joe’s

Sally

Bud

¥

N\

check

for Joe
Frequents

check these
are equal

1N
=

to output

33

Explicit Tuple-Variables

€ Sometimes, a query needs to use two
coples of the same relation.

® Distinguish copies by following the
relation name by the name of a tuple-
variable, in the FROM clause.

@ It's always an option to rename
relations this way, even when not

essential.

34

1 L

£ 1A
1-JUIII

- CAl
. OCI

&€ From Lemonades(name, manf), find all pairs
of lemonades by the same manufacturer.
+ Do not produce pairs like (Bud, Bud).

* Produce pairs in alphabetic order, e.g. (Bud,
Miller), not (Miller, Bud).

SELECT bl.name, b2.name
FROM Lemonades bl, Lemonades b2
WHERE bl.manft = b2.man¥f AND

bl.name < b2.name;

35

CahailhNniiAviAae
subqgueries

@ A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a

value in a number of places, including
FROM and WHERE clauses.

¢ . in place of a relation in the
FROM clause, we can use a subquery
and then query Its result.

* Must use a tuple-variable to name tuples of
the result.

36

=xample: Subquery in FROM

®Find the lemonades liked by at least one
person who frequents Joe’s Bar.

Drinkers who
SELECT lIemonade frequent Joe’s Bar
FROM Like

WHERE Likes.drinker = JD.drinker;

37

Subqgueries That Return One Tuple

@ If a subqguery is guaranteed to produce
one tuple, then the subquery can be
used as a value.

* Usually, the tuple has one component.

+ A run-time error occurs If there is no tuple
or more than one tuple.

38

. Single-Tuple Subguery

€ Using Sells(bar, lemonade, price), find
the bars that serve Miller for the same

price Joe charges for Bud.
€ Two queries would surely work:

1. Find the price Joe charges for Bud.

2. FInd the bars that serve Miller at that price.

39

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE lemonade = 'Miller’ AND
price =

The price at
which Joe /

sells Bud

40

The IN Operator

@ <tuple> IN (<subquery>) is true if and
only If the tuple is a member of the
relation produced by the subquery.

¢ Opposite: <tuple=> NOT IN (<subquery>).

@ IN-expressions can appear in WHERE
clauses.

41

- IN

€ Using Lemonades(name, manf) and Likes(drinker,
lemonade), find the name and manufacturer of
each lemonade that Fred likes.

SELECT *

FROM Lemonades

WHERE name IN|(SELECT lemonade

The set of FROM Likes

lemonaces 'zfed/ WHERE drinker = 'Fred’);

likes

42

Remember These From Lecture #17?

SELECT a
FROM R, S
WHERE R.b = S_.Db;

SELECT a
FROM R
WHERE b IN (SELECT b FROM S);

43

IN Is a Predicate About R’s Tuples

SELECT a

FROM R

WHERE b 1IN KSELECT b FROM S)|;

One loop, over
the tuples of R

Two 2’s

W |2

B~ NT

N N T
o O110

(1,2) satisfies
the condition;
1 is output once.

44

This Query Pairs Tuples from R, S

SELECT a
FROM R, S
WHERE R.b = S_.Db;

(1,2) with (2,5)
and (1,2) with
Double loop, over (2,6) both satisfy

the tuples of R and S . = the condition;
1 is output twice.

N NT
o O110

WP |2
B~ NT

45

The Exists Operator

¥ EXISTS(<subquery>) is true if and only
If the subquery result Is not empty.

¢ . From Lemonedes(name,
manf) , find those lemonades that are
the unique lemonade by their
manufacturer.

46

. EXISTS

Notice scope rule: manf refers
SELECT name to closest nested FROM with

FROM Lemonades bl a relation having that attribute.
WHERE NOT EXISTS (

Set of SELECT *

lemonades Notice the
withthe |FROM Lemonages SQL “not
same — | e

equals”
manfas | WHERE manf W operator
b1, but
e name <> bl.name);

same
lemonade

47

The Operator ANY

€ x = ANY(<subquery>) is a boolean
condition that Is true Iff x equals at least
one tuple in the subquery result.

+ = could be any comparison operator.

VN

4 . x >= ANY(<subquery>) means x
IS not the uniquely smallest tuple produced
by the subquery.

+ Note tuples must have one component only.

48

The Operator ALL

@ x <> ALL(<subquery>) is true iff for
every tuple £ in the relation, x Is not
equal to .

¢ That is, x Is not in the subquery resulit.
@ <> can be any comparison operator.
4 . x >= ALL(<subquery>)

means there Is no tuple larger than x In

the subguery result.

49

: ALL

& From Sells(bar, lemonade, price), find
the lemonade(s) sold for the highest
price.

SELECT lemonade price from the outer
FROM Sells s than any price.
WHERE price >= ALL(

ELECT price

FROM Sells):

50

Union, Intersection, and Difference

€ Union, intersection, and difference of
relations are expressed by the following
forms, each involving subgueries:

* (<su
* (<su
* (<su

0C
0C

0C

uery>) UNION (<subquery>)
uery>) INTERSECT (<subquery>)
uery>) EXCEPT (<subquery>)

o1

- Intersection

Jsing Likes(drinker, lemonade), Sells(bar,
emonade, price), and Frequents(drinker,
nar), find the drinkers and lemonades
such that:

1. The drinker likes the lemonade, and

2. The drinker frequents at least one bar that
sells the lemonade.

52

Notice trick:
subquery is

o Solution

The drinker frequents
a bar that sells the

(SELECT * FROM Likes) lemonade.

INTERSECT

53

Bag Semantics

@ Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference Is set semantics.

¢ That Is, duplicates are eliminated as the
operation is applied.

o4

Motivation: Efficiency

€ \When doing projection, it is easier to
avoid eliminating duplicates.

¢ Just work tuple-at-a-time.

& For intersection or difference, it is most
efficient to sort the relations first.

+ At that point you may as well eliminate the
duplicates anyway.

55

Controlling Duplicate Elimination

@ Force the result to be a set by
SELECT DISTINCT . ..

@ Force the result to be a bag (i.e., don't
eliminate duplicates) by ALL, as In
. . UNION ALL . ..

56

: DISTINCT

&®From Sells(bar, lemonade, price), find all the
different prices charged for lemonades:

SELECT D

ISTINCT price

FROM Sells;

¥ Notice that wit
would be listec
bar/lemonade

nout DISTINCT, each price

as many times as there were

pairs at that price.

57

: ALL

@ Using relations Frequents(drinker, bar) and
Likes(drinker, lemonade):

(SELECT drinker FROM Frequents)
EXCEPT ALL
(SELECT drinker FROM Likes);

@ Lists drinkers who frequent more bars than
they like lemonades, and does so as many
times as the difference of those counts.

58

Join Expressions

€ SQL provides several versions of (bag)
joins.
€ These expressions can be stand-alone

gueries or used in place of relations in a
FROM clause.

59

Products and Natural Joins

& Natural join:

R NATURAL JOIN S;
€ Product:
R CROSS JOIN S;
4 :
SELECT * FROM Likes NATURAL JOIN Sells;

@ Relations can be parenthesized subqueries, as
well.

60

TI,-. Y

heta Join

®R JOIN S ON <condition>

¢ : using Drinkers(name, addr) and
Frequents(drinker, bar):

SELECT * FROM Drinkers JOIN
Frequents ON name = drinker;

gives us all (@, a, @, b) quadruples such
that drinker @ lives at address a and
frequents bar b.

61

