Relational Algebra

Basic Operations Algebra of Bags

What is an "Algebra"

- Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a query language for relations.

Core Relational Algebra

- Union, intersection, and difference.
 - Usual set operations, but both operands must have the same relation schema.
- Selection: picking certain rows.
- Projection: picking certain columns.
- Products and joins: compositions of relations.
- Renaming of relations and attributes.

Selection

- $ightharpoonup R1 := \sigma_{c}(R2)$
 - C is a condition (as in "if" statements) that refers to attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

Example: Selection

Relation Sells:

bar	lemonade	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

JoeMenu := $\sigma_{bar="Joe's"}(Sells)$:

bar	lemonade	price
Joe's	Bud	2.50
Joe's	Miller	2.75

Projection

- $ightharpoonup R1 := \pi_{L}(R2)$
 - L is a list of attributes from the schema of R2.
 - R1 is constructed by looking at each tuple of R2, extracting the attributes on list *L*, in the order specified, and creating from those components a tuple for R1.
 - Eliminate duplicate tuples, if any.

Example: Projection

Relation Sells:

bar	lemonade	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

Prices := $\Pi_{lemonade,price}$ (Sells):

	5. 5. 5 / F : 5 5
lemonade	price
Bud	2.50
Miller	2.75
Miller	3.00

Extended Projection

- Using the same π_L operator, we allow the list L to contain arbitrary expressions involving attributes:
 - 1. Arithmetic on attributes, e.g., A+B->C.
 - 2. Duplicate occurrences of the same attribute.

Example: Extended Projection

$$R = \begin{pmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\pi_{A+B->C,A,A}(R) =$$

С	A1	A2
3	1	1
7	3	3

Product

- ◆R3 := R1 X R2
 - Pair each tuple t1 of R1 with each tuple t2 of R2.
 - Concatenation t1t2 is a tuple of R3.
 - Schema of R3 is the attributes of R1 and then R2, in order.
 - But beware attribute A of the same name in R1 and R2: use R1.A and R2.A.

Example: R3 := R1 X R2

R1(Α,	В)
	1	2	
	3	4	

R2(B, C)
5 6
7 8
9 10

R3(Α,	R1.B,	R2.B	C
	1	2	5	6
	1	2	7	8
	1	2	9	10
	3	4	5	6
	3	4	7	8
	3	4	9	10

Theta-Join

- $ightharpoonup R3 := R1 \bowtie_C R2$
 - Take the product R1 X R2.
 - Then apply σ_c to the result.
- ◆As for **o**, **c** can be any boolean-valued condition.
 - Historic versions of this operator allowed only A θ B, where θ is =, <, etc.; hence the name "theta-join."

Example: Theta Join

Sells(bar, lemonade, price)
Joe's Bud 2.50
Joe's Miller 2.75
Sue's Bud 2.50
Sue's Coors 3.00

Bars(name, addr Joe's Maple St. Sue's River Rd.

BarInfo := Sells ⋈_{Sells.bar = Bars.name} Bars

BarInfo(

bar,	lemonade	price,	name,	addr
Joe's	Bud	2.50	Joe's	Maple St.
Joe's	Miller	2.75	Joe's	Maple St.
Sue's	Bud	2.50	Sue's	River Rd.
Sue's	Coors	3.00	Sue's	River Rd.

Natural Join

- A useful join variant (*natural* join) connects two relations by:
 - Equating attributes of the same name, and
 - Projecting out one copy of each pair of equated attributes.
- \bullet Denoted R3 := R1 \bowtie R2.

Example: Natural Join

Sells(bar,	emonade,	price
	Joe's	Bud	2.50
	Joe's	Miller	2.75
	Sue's	Bud	2.50
	Sue's	Coors	3.00

Bars(bar,	addr	
	Joe's	Maple St.	ı
	Sue's	River Rd.	

BarInfo := Sells ⋈ Bars

Note: Bars.name has become Bars.bar to make the natural

join "work."
BarInfo(

bar,	lemonade,	price,	addr
Joe's	Bud	2.50	Maple St.
Joe's	Milller	2.75	Maple St.
Sue's	Bud	2.50	River Rd.
Sue's	Coors	3.00	River Rd.

Renaming

- The ρ operator gives a new schema to a relation.
- •R1 := $\rho_{R1(A1,...,An)}(R2)$ makes R1 be a relation with attributes A1,...,An and the same tuples as R2.
- Simplified notation: R1(A1,...,An) := R2.

Example: Renaming

```
Bars( name, addr
Joe's Maple St.
Sue's River Rd.
```

R(bar, addr) := Bars

R(bar, addr Joe's Maple St. Sue's River Rd.

Building Complex Expressions

- Combine operators with parentheses and precedence rules.
- Three notations, just as in arithmetic:
 - 1. Sequences of assignment statements.
 - 2. Expressions with several operators.
 - 3. Expression trees.

Sequences of Assignments

- Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
- **Example:** R3 := R1 $\bowtie_{\mathcal{C}}$ R2 can be written:

R4 := R1 X R2

R3 := $\sigma_c(R4)$

Expressions in a Single Assignment

- Example: the theta-join R3 := R1 $\bowtie_{\mathcal{C}}$ R2 can be written: R3 := $\sigma_{\mathcal{C}}$ (R1 X R2)
- Precedence of relational operators:
 - 1. $[\sigma, \pi, \rho]$ (highest).
 - 2. [X, ⋈].
 - **3.** ∩.
 - **4.** [∪, —]

Expression Trees

- Leaves are operands --- either variables standing for relations or particular, constant relations.
- Interior nodes are operators, applied to their child or children.

Example: Tree for a Query

◆Using the relations Bars(name, addr) and Sells(bar, lemonade, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

As a Tree:

Example: Self-Join

- Using Sells(bar, lemonade, price), find the bars that sell two different lemonades at the same price.
- ◆Strategy: by renaming, define a copy of Sells, called S(bar, lemonade1, price). The natural join of Sells and S consists of quadruples (bar, lemonade, lemonade1, price) such that the bar sells both lemonades at this price.

The Tree

Schemas for Results

- Union, intersection, and difference: the schemas of the two operands must be the same, so use that schema for the result.
- Selection: schema of the result is the same as the schema of the operand.
- Projection: list of attributes tells us the schema.

Schemas for Results --- (2)

- Product: schema is the attributes of both relations.
 - Use R.A, etc., to distinguish two attributes named A.
- Theta-join: same as product.
- Natural join: union of the attributes of the two relations.
- Renaming: the operator tells the schema.

Relational Algebra on Bags

- ◆A *bag* (or *multiset*) is like a set, but an element may appear more than once.
- ◆Example: {1,2,1,3} is a bag.
- ◆Example: {1,2,3} is also a bag that happens to be a set.

Why Bags?

- ◆SQL, the most important query language for relational databases, is actually a bag language.
- Some operations, like projection, are more efficient on bags than sets.

Operations on Bags

- Selection applies to each tuple, so its effect on bags is like its effect on sets.
- Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

Example: Bag Selection

$$\sigma_{A+B<5}(R) = A B$$
1 2
1 2

Example: Bag Projection

R(Α,	В)
	1	2	
	5	6	
	1	2	

$$\mathbf{\Pi}_{A}(R) = \boxed{\begin{array}{c} A \\ 1 \\ 5 \\ 1 \end{array}}$$

Example: Bag Product

S(В,	С	
	3	4	
	7	8	

$$RXS =$$

Α	R.B	S.B	С
1	2	3	4
1	2	7	8
5 5	6	3	4 8
5	6	7	8
1	2	3	4
1	2	7	8

Example: Bag Theta-Join

$$R \bowtie_{R.B < S.B} S =$$

Α	R.B	S.B	С
1	2	3	4
1	2	7	8
5	6	7	8
1	2	3	4
1	2	7	8

Bag Union

- An element appears in the union of two bags the sum of the number of times it appears in each bag.
- **◆Example**: $\{1,2,1\}$ ∪ $\{1,1,2,3,1\}$ = $\{1,1,1,1,1,2,2,3\}$

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- **◆Example:** $\{1,2,1,1\}$ ∩ $\{1,2,1,3\}$ = $\{1,1,2\}$.

Bag Difference

- •An element appears in the difference A B of bags as many times as it appears in A, minus the number of times it appears in B.
 - But never less than 0 times.
- \bullet Example: $\{1,2,1,1\} \{1,2,3\} = \{1,1\}.$

Beware: Bag Laws != Set Laws

- ◆Some, but *not all* algebraic laws that hold for sets also hold for bags.
- **Example:** the commutative law for union $(R \cup S = S \cup R)$ does hold for bags.
 - Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

Example: A Law That Fails

- Set union is *idempotent*, meaning that $S \cup S = S$.
- ♦ However, for bags, if x appears n times in S, then it appears 2n times in $S \cup S$.
- ♦ Thus $S \cup S != S$ in general.
 - e.g., $\{1\} \cup \{1\} = \{1,1\} != \{1\}.$

Eczane Veritabanı

- ♦İlişkisel Şemalar
- ◆İlaç (<u>ilçkodu</u>, ilçadı, birimi, fiyatı)
- ◆Kurum (<u>kurno</u>, kadı, ktürü)
- ◆Personel (<u>kurno</u>, <u>pno</u>, padı, psoyadı)
- ◆Doktor (<u>kurno</u>, <u>pno</u>)
- ◆Reçete (<u>kurno</u>, <u>rçtno</u>, rçttar, hastapno, drpno)
- ◆Reçete_İlaç (<u>kurno</u>, <u>rçtno</u>, <u>ilçkodu</u>, miktar)
- ◆Fatura (<u>ftrno</u>, kurno, ftrtar, ftrtutarı)
- ◆Fatura_Reçete (ftrno, kurno, rctno, rcttutarı)

 Aşağıdaki sorguları ilişkisel cebirle yazınız.

- ♦ KTÜ kurumunda çalışan doktorların hiç reçete yazmamış olanlarının personel numarasını, adını ve soyadını bul.
- $ightharpoonup R1 := \pi_{\text{kurno}} \left(\sigma_{\text{kuradı='KTÜ'}} (\text{Kurum}) \right)$
- $ightharpoonup R2 := Doktor \bowtie R1$
- \bullet R3(kurno, pno) := $\pi_{\text{kurno, drpno}}$ (Reçete)
- ◆R4 := R2 R3;
- ♦R5 := $\pi_{pno, padi, psoyadi}$ (Personel \bowtie R4)

- Yazdığı reçetelerin en az birinde Bil326 kodlu ilaç yer alan KTÜ kurumunda çalışan doktorların personel numarasını, adını ve soyadını bul.
- $ightharpoonup R1 := \pi_{\text{kurno}} \left(\sigma_{\text{kuradı='KTÜ'}} (\text{Kurum}) \right)$
- \bullet R2 := $\pi_{\text{kurno, rçtno}}$ ($\sigma_{\text{ilçkodu='Bil326'}}$ (Reçete_İlaç))
- ♦R3(kurno, pno) := $\pi_{\text{kurno, drpno}}$ ((Reçete ⋈R2) ⋈ R1)
- $ightharpoonup R4 := \pi_{pno, padi, psoyadi}(Personel \bowtie R3)$

- KTÜ kurumunun doktorlarından yazdığı reçetelerin hiçbirinde Bil326 kodlu ilaç yer almayanların personel numarasını, adını ve soyadını bul.
- $ightharpoonup R1 := \pi_{\text{kurno}} \left(\sigma_{\text{kuradı='KTÜ'}} (\text{Kurum}) \right)$
- $ightharpoonup R2 := \pi_{\text{kurno, rçtno}} (\sigma_{\text{ilçkodu='Bil326'}}(\text{Reçete_İlaç}))$
- \bullet R3(kurno, pno) := $\pi_{\text{kurno, drpno}}$ (Reçete \bowtie R2)
- ightharpoonupR4 := Personel ightharpoonupR1
- R5 := R4 R3
- ♦R6 := $\pi_{pno, padi, psoyadi}$ (Personel \bowtie R5)

- Tüm reçetelerin faturaları kesilmiş olan kurumların numarasını ve adını bul.
- $ightharpoonup R1 := \pi_{kurno, rctno}(Recete)$
- \bullet R2 := $\pi_{\text{kurno, rçtno}}$ (Fatura_Reçete)
- \bullet R3 := π_{kurno} (R1 R2)
- $ightharpoonup R4 := (\pi_{kurno}(Kurum)) R3$
- \bullet R5 := $\pi_{\text{kurno, kuradı}}$ (Kurum \bowtie R4)

- KTÜ' de, aynı hastaya birden çok reçete yazmış olan doktorların personel numarasını, adını, soyadını bul.
- $ightharpoonup R1 := \pi_{\text{kurno}}(\sigma_{\text{kuradi='KTÜ'}}(\text{Kurum}))$
- $ightharpoonup R2 := \pi_{\text{kurno, rctno, hastapno, drpno}}$ (Recete)
- ◆R3(kurno, rçtno2, hastapno, drpno) := R2
- $ightharpoonup R4 := (\pi_{\text{kurno, drpno}}(\sigma_{\text{rctno}}) = rctno2}(R2 \bowtie R3))$
- ◆R5(kurno, pno) := R4 ⋈ R1
- ♦ R6 := $\sigma_{pno, padi, psoyadi}$ (Personel \bowtie R5)