
More SQL

Extended Relational AlgebraExtended Relational Algebra
Outerjoins, Grouping/Aggregation

Insert/Delete/Update

1

The Extended Algebra

δ = eliminate duplicates from bags.

τ = sort tuples.

γ = grouping and aggregation.

Outerjoin : avoids “dangling tuples” = tuples
that do not join with anything.j y g

2

Duplicate Elimination

R1 := δ(R2).

R1 consists of one copy of each tuple
that appears in R2 one or more timesthat appears in R2 one or more times.

3

Example: Duplicate Elimination

R = (A B)()
1 2
3 4
1 21 2

δδ(R) = A B
1 2
3 43 4

4

Sorting
R1 := τL (R2).

l f f h b fL is a list of some of the attributes of R2.

R1 is the list of tuples of R2 sorted first on
the value of the first attribute on L, then on
the second attribute of L, and so on.

Break ties arbitrarily.

τ is the only operator whose result is neitherτ is the only operator whose result is neither
a set nor a bag.

5

Example: Sorting

R = (A B)()
1 2
3 4
5 25 2

τB (R) = [(5 2) (1 2) (3 4)]τB (R) = [(5,2), (1,2), (3,4)]

6

Aggregation Operators

Aggregation operators are not
operators of relational algebra.
Rather they apply to entire columns ofRather, they apply to entire columns of
a table and produce a single result.
Th i l SUMThe most important examples: SUM,
AVG, COUNT, MIN, and MAX.

7

Example: Aggregation

R = (A B)()
1 3
3 4
3 23 2

SUM(A) = 7SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4()
AVG(B) = 3

8

Grouping Operator

R1 := γL (R2). L is a list of elements
that are either:

1 Individual (grouping) attributes1. Individual (grouping) attributes.
2. AGG(A), where AGG is one of the

ti t d A iaggregation operators and A is an
attribute.
• An arrow and a new attribute name renames

the component.

9

Applying γ (R)Applying γL(R)

G R di t ll th iGroup R according to all the grouping
attributes on list L.

That is: form one group for each distinct list
of values for those attributes in R.

Within each group, compute AGG(A) for
each aggregation on list Leach aggregation on list L.
Result has one tuple for each group:

1. The grouping attributes and
2 Their group’s aggregations

10

2. Their group s aggregations.

Example: Grouping/Aggregation

R = (A B C)()
1 2 3
4 5 6
1 2 5

Then, average C
within groups:

1 2 5

γ (R) = ??
A B X
1 2 4γA,B,AVG(C)->X (R) = ??

First, group R by A and B :
A B C

1 2 4
4 5 6

A B C
1 2 3
1 2 5

11

1 2 5
4 5 6

Outerjoin

Suppose we join R⋈C S.

A tuple of R that has no tuple of S with
which it joins is said to be danglingwhich it joins is said to be dangling.

Similarly for a tuple of S.

Outerjoin preserves dangling tuples by
padding them NULLpadding them NULL.

12

Example: Outerjoin

R = (A B) S = (B C)R (A B) S (B C)
1 2 2 3
4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are danglingare dangling.

R OUTERJOIN S = A B C
1 2 31 2 3
4 5 NULL
NULL 6 7

13

NULL 6 7

Now --- Back to SQL

Each Operation Has a SQLEach Operation Has a SQL
Equivalent

14

Outerjoins

R OUTER JOIN S is the core of an
t j i i It i difi d bouterjoin expression. It is modified by:

1. Optional NATURAL in front of OUTER.
2. Optional ON <condition> after JOIN.
3. Optional LEFT, RIGHT, or FULL before p , ,

OUTER.
LEFT = pad dangling tuples of R only.

Only one
of these

RIGHT = pad dangling tuples of S only.
FULL = pad both; this choice is the default.

of these

15

Aggregations

SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on p gg g
the column.
Also COUNT(*) counts the number ofAlso, COUNT(*) counts the number of
tuples.

16

Example: Aggregation

From Sells(bar, lemonade, price), find
the average price of Bud:

SELECT AVG(price)SELECT AVG(price)
FROM Sells
WHERE lemonade = ’Bud’;

17

Eliminating Duplicates in anEliminating Duplicates in an
AggregationAggregation

Use DISTINCT inside an aggregation.
Example: find the number of differentExample: find the number of different
prices charged for Bud:

SELECT COUNT(DISTINCT price)
FROM SellsFROM Sells
WHERE lemonade = ’Bud’;

18

NULL’s Ignored in Aggregation

NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column.
But if there are no non-NULL values in
a column then the result of thea column, then the result of the
aggregation is NULL.

Exception: COUNT of an empty set is 0.

19

Example: Effect of NULL’s

SELECT count(*) The number of bars

FROM Sells
WHERE lemonade = ’Bud’;

that sell Bud.

WHERE lemonade = Bud ;

SELECT count(price)
FROM Sells

The number of bars
that sell Bud at a
kFROM Sells

WHERE lemonade = ’Bud’;
known price.

20

;

Grouping

We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a
list of attributes.
The relation that results from the
SELECT FROM WHERE is groupedSELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group.

21

pp y g p

Example: Grouping

From Sells(bar, lemonade, price), find
the average price for each lemonade:

SELECT lemonade, AVG(price)SELECT lemonade, AVG(price)
FROM Sells
GROUP BY lemonade;

l d AVG(price)lemonade AVG(price)
Bud 2.33
… …

22

Example: Grouping
From Sells(bar, lemonade, price) and
Frequents(drinker bar) find for each drinkerFrequents(drinker, bar), find for each drinker
the average price of Bud at the bars they
frequent:frequent:

SELECT drinker, AVG(price)
FROM F t S ll

Compute all
drinker-bar-

i t i lFROM Frequents, Sells
WHERE lemonade = ’Bud’ AND

price triples
for Bud.

Frequents.bar = Sells.bar
GROUP BY drinker;

Then group
them by
drinker

23

GROUP BY drinker; drinker.

Restriction on SELECT ListsRestriction on SELECT Lists
With AggregationWith Aggregation

If any aggregation is used then eachIf any aggregation is used, then each
element of the SELECT list must be
either:either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

24

Illegal Query Example

You might think you could find the bar
that sells Bud the cheapest by:

SELECT bar, MIN(price)SELECT bar, MIN(price)
FROM Sells
WH l d ’ d’WHERE lemonade = ’Bud’;

But this query is illegal in SQLBut this query is illegal in SQL.

25

HAVING Clauses

HAVING <condition> may follow a
GROUP BY clause.
If so the condition applies to eachIf so, the condition applies to each
group, and groups not satisfying the
condition are eliminatedcondition are eliminated.

26

Example: HAVING

From Sells(bar, lemonade, price) and
Lemonades(name, manf), find the
average price of those lemonades that g p
are either served in at least three bars
or are manufactured by Pete’sor are manufactured by Pete s.

27

Solution

SELECT lemonade, AVG(price)
Lemonade groups with at least
3 non-NULL bars and also
lemonade groups where the

FROM Sells
GROUP BY lemonade

manufacturer is Pete’s.

GROUP BY lemonade
HAVING COUNT(bar) >= 3 OR

lemonade IN (SELECT name
FROM Lemonades

Lemonades manu-
factured by
Pete’s.

FROM Lemonades
WHERE manf = ’Pete’’s’);

28

);

Requirements on HAVINGRequirements on HAVING
ConditionsConditions

Anything goes in a subquery.
Outside subqueries, they may refer to
attributes only if they are either:attributes only if they are either:

1. A grouping attribute, or
2 A d2. Aggregated

(same condition as for SELECT clauses (
with aggregation).

29

SELECT Statement SyntaxSELECT Statement Syntax
Diagramg

http://www sqlite org/syntaxdiagrams html
30

http://www.sqlite.org/syntaxdiagrams.html

Database Modifications

A modification command does not
return a result (as a query does), but
changes the database in some way.g y
Three kinds of modifications:

1 I t t l t l1. Insert a tuple or tuples.
2. Delete a tuple or tuples.
3. Update the value(s) of an existing tuple

or tuples.
31

p

Insertion

To insert a single tuple:
INSERT INTO <relation>
VALUES (<list of values>);VALUES (<list of values>);

Example: add to Likes(drinker,
lemonade) the fact that Sally likes Bud.

INSERT INTO LikesINSERT INTO Likes
VALUES(’Sally’, ’Bud’);

32

Specifying Attributes in INSERT

We may add to the relation name a list of
attributes.
Two reasons to do so:Two reasons to do so:

1. We forget the standard order of attributes for
the relationthe relation.

2. We don’t have values for all attributes, and
t th t t fill i i iwe want the system to fill in missing

components with NULL or a default value.

33

Example: Specifying Attributes

Another way to add the fact that Sally
likes Bud to Likes(drinker, lemonade):

INSERT INTO Likes(lemonade,
d i k)drinker)

VALUES(’Bud’, ’Sally’);(, y);

34

Adding Default Values

In a CREATE TABLE statement, we can
follow an attribute by DEFAULT and a
value.
When an inserted tuple has no value
for that attribute the default will befor that attribute, the default will be
used.

35

Example: Default Values

CREATE TABLE Drinkers (
name CHAR(30) PRIMARY KEY,
addr CHAR(50)addr CHAR(50)

DEFAULT ’123 Sesame St.’,
phone CHAR(16)

););

36

Example: Default Values

INSERT INTO Drinkers(name)
VALUES(’Sally’);

Resulting tuple:Resulting tuple:

name address phone
Sally 123 Sesame St NULL
name address phone

37

Inserting Many Tuples

We may insert the entire result of a
query into a relation, using the form:

INSERT INTO <relation>INSERT INTO <relation>
(<subquery>);

38

Example: Insert a Subquery

Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Sally’s “potential buddies,” i.e., y p , ,
those drinkers who frequent at least
one bar that Sally also frequentsone bar that Sally also frequents.

39

Pairs of DrinkerThe other

Solution
Pairs of Drinker
tuples where the
first is for Sally,
h d i f

The other
drinker

INSERT INTO PotBuddies
the second is for
someone else,
and the bars are

(SELECT d2.drinker
FROM Frequents d1 Frequents d2

the same.

FROM Frequents d1, Frequents d2
WHERE d1.drinker = ’Sally’ AND
d2.drinker <> ’Sally’ AND
d1 bar d2 bard1.bar = d2.bar

);
40

);

Deletion

To delete tuples satisfying a condition
from some relation:

DELETE FROM <relation>DELETE FROM <relation>
WHERE <condition>;

41

Example: Deletion

Delete from Likes(drinker, lemonade)
the fact that Sally likes Bud:

DELETE FROM LikesDELETE FROM Likes
WHERE drinker = ’Sally’ AND

lemonade = ’Bud’;

42

Example: Delete all Tuples

Make the relation Likes empty:

DELETE FROM Likes;DELETE FROM Likes;

Note no WHERE clause needed.

43

Example: Delete Some Tuples
Delete from Lemonades(name, manf)
all lemonades for which there is anotherall lemonades for which there is another
lemonade by the same manufacturer.

Lemonades with the same
f t dDELETE FROM Lemonades b

WHERE EXISTS (

manufacturer and
a different name
from the name of
the lemonade representedWHERE EXISTS (

SELECT name FROM Lemonades

the lemonade represented
by tuple b.

WHERE manf = b.manf AND
name <> b name);

44

name <> b.name);

Semantics of Deletion --- (1)

Suppose Anheuser-Busch makes only
Bud and Bud Lite.
Suppose we come to the tuple b forSuppose we come to the tuple b for
Bud first.
Th b i b fThe subquery is nonempty, because of
the Bud Lite tuple, so we delete Bud.p
Now, when b is the tuple for Bud Lite,
do we delete that tuple too?

45

do we delete that tuple too?

Semantics of Deletion --- (2)

Answer: we do delete Bud Lite as well.
The reason is that deletion proceeds
in two stages:in two stages:

1. Mark all tuples for which the WHERE
condition is satisfiedcondition is satisfied.

2. Delete the marked tuples.

46

Updates

To change certain attributes in certain
tuples of a relation:

UPDATE <relation>UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition on tuples>;

47

Example: Update

Change drinker Fred’s phone number to
555-1212:

UPDATE Drinkers
SET phone = ’555-1212’
WHERE name = ’Fred’;WHERE name Fred ;

48

Example: Update Several Tuples

Make $4 the maximum price for
lemonade:

UPDATE Sells
SET price = 4.00
WHERE price > 4 00;WHERE price > 4.00;

49

