Multivalued Dependencies

Fourth Normal Form Reasoning About FD's + MVD's

1

Definition of MVD

A multivalued dependency (MVD) on R, X->->Y, says that if two tuples of R agree on all the attributes of X, then their components in Y may be swapped, and the result will be two tuples that are also in the relation.

i.e., for each value of X, the values of Y are independent of the values of R-X-Y.

Example: MVD

Drinkers(name, addr, phones, lemonadesLiked)

A drinker's phones are independent of the lemonades they like.

name->->phones and name ->->lemonadesLiked.

Thus, each of a drinker's phones appears with each of the lemonades they like in all combinations.

This repetition is unlike FD redundancy.

name->addr is the only FD.

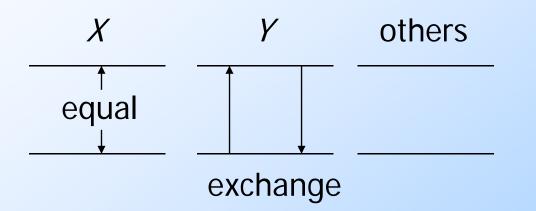
Tuples Implied by name->->phones

If we have tuples:

name	addr	phones	lemonadesLiked
sue	а	p1	11
sue	а	p2	12
sue	а	p2	11
sue	а	p1	12

Then these tuples must also be in the relation.

Picture of MVD X->->Y



MVD Rules

Every FD is an MVD (*promotion*).

- If X -> Y, then swapping Y's between two tuples that agree on X doesn't change the tuples.
- Therefore, the "new" tuples are surely in the relation, and we know X->-> Y.

Complementation : If X ->-> Y, and Z is all the other attributes, then X ->->Z.

Splitting Doesn't Hold

- Like FD's, we cannot generally split the left side of an MVD.
- But unlike FD's, we cannot split the right side either --- sometimes you have to leave several attributes on the right side.

Example: Multiattribute Right Sides

Drinkers(name, areaCode, phone, lemonadesLiked, manf)

- A drinker can have several phones, with the number divided between areaCode and phone (last 7 digits).
- A drinker can like several lemonades, each with its own manufacturer.

Example Continued

Since the areaCode-phone combinations for a drinker are independent of the lemonadesLikedmanf combinations, we expect that the following MVD's hold:

name ->-> areaCode phone
name ->-> lemonadesLiked manf

Example Data

Here is possible data satisfying these MVD's:

name	areaCode	phone	lemonadesLiked	manf
Sue	650	555-1111	Bud	A.B.
Sue	650	555-1111	WickedAle	Pete's
Sue	415	555-9999	Bud	A.B.
Sue	415	555-9999	WickedAle	Pete's

But we cannot swap area codes or phones by themselves. That is, neither name->->areaCode nor name->->phone holds for this relation.

Fourth Normal Form

The redundancy that comes from MVD's is not removable by putting the database schema in BCNF.

There is a stronger normal form, called 4NF, that (intuitively) treats MVD's as FD's when it comes to decomposition, but not when determining keys of the relation.

4NF Definition

- A relation *R* is in *4NF* if: whenever
 X->-> *Y* is a nontrivial MVD, then *X* is a superkey.
 - Nontrivial MVD means that:
 - 1. Y is not a subset of X, and
 - 2. X and Y are not, together, all the attributes.
 - Note that the definition of "superkey" still depends on FD's only.

BCNF Versus 4NF

Remember that every FD X -> Y is also an MVD, X ->-> Y.

Thus, if *R* is in 4NF, it is certainly in BCNF.

 Because any BCNF violation is a 4NF violation (after conversion to an MVD).

 But R could be in BCNF and not 4NF, because MVD's are "invisible" to BCNF.

Decomposition and 4NF

If X->->Y is a 4NF violation for relation R, we can decompose R using the same technique as for BCNF.
 1. XY is one of the decomposed relations.
 All but Y - X is the other.

Example: 4NF Decomposition

Drinkers(name, addr, phones, lemonadesLiked)

- FD: name -> addr
- MVD's: name ->-> phones

name ->-> lemonadesLiked

Key is {name, phones, lemonadesLiked}.

All dependencies violate 4NF.

Example Continued

Decompose using name -> addr:
 Drinkers1(name, addr)
 In 4NF; only dependency is name -> addr.
 Drinkers2(name, phones, lemonadesLiked)
 Not in 4NF. MVD's name ->-> phones and name ->-> lemonadesLiked apply. No FD's, so all three attributes form the key.

Example: Decompose Drinkers2

- Either MVD name ->-> phones or name ->-> lemonadesLiked tells us to decompose to:
 - Drinkers3(<u>name</u>, <u>phones</u>)
 - Drinkers4(<u>name</u>, <u>lemonadesLiked</u>)

Reasoning About MVD's + FD's

Problem: given a set of MVD's and/or FD's that hold for a relation *R*, does a certain FD or MVD also hold in *R*?

Solution: Use a tableau to explore all inferences from the given set, to see if you can prove the target dependency.

Why Do We Care?

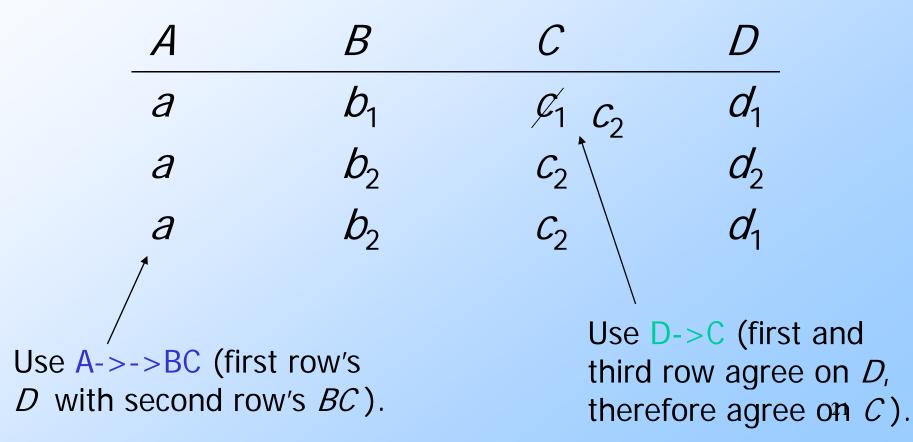
- 1. 4NF technically requires an MVD violation.
 - Need to infer MVD's from given FD's and MVD's that may not be violations themselves.
- 2. When we decompose, we need to project FD's + MVD's.

Example: Chasing a Tableau With MVD's and FD's

- To apply a FD, equate symbols, as before.
- To apply an MVD, generate one or both of the tuples we know must also be in the relation represented by the tableau.
 We'll prove: if A->->BC and D->C, then A->C.

The Tableau for A->C

Goal: prove that $c_1 = c_2$.



Example: Transitive Law for MVD's

• If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$.

- Obvious from the complementation rule if the Schema is ABC.
- But it holds no matter what the schema; we'll assume ABCD.

The Tableau for $A \rightarrow C$ Goal: derive tuple (a, b_1, c_2, d_1) .

A	В	С	D
а	b_1	<i>C</i> ₁	d_1
а	b_2	<i>C</i> ₂	d_2
а	b_1	<i>C</i> ₂	d_2
<i>a</i>	<i>b</i> ₁	<i>C</i> ₂	d_1

Use A->->B to swap *B* from the first row into the second.

Use $B \rightarrow C$ to swap C from the third row into the first.

Rules for Inferring MVD's + FD's

- Start with a tableau of two rows.
 - These rows agree on the attributes of the left side of the dependency to be inferred.
 - And they disagree on all other attributes.
 - Use unsubscripted variables where they agree, subscripts where they disagree.

Inference: Applying a FD

- Apply a FD X->Y by finding rows that agree on all attributes of X. Force the rows to agree on all attributes of Y.
 - Replace one variable by the other.
 - If the replaced variable is part of the goal tuple, replace it there too.

Inference: Applying a MVD

- Apply a MVD X->->Y by finding two rows that agree in X.
 - Add to the tableau one or both rows that are formed by swapping the Y-components of these two rows.

Inference: Goals

To test whether U->V holds, we succeed by inferring that the two variables in each column of V are actually the same.

If we are testing U->->V, we succeed if we infer in the tableau a row that is the original two rows with the components of V swapped.

Inference: Endgame

- Apply all the given FD's and MVD's until we cannot change the tableau.
- If we meet the goal, then the dependency is inferred.
- If not, then the final tableau is a counterexample relation.
 - Satisfies all given dependencies.
 - Original two rows violate target dependency.

A Complete Set of Inference Rules

- 1. Reflexivity. If $\{B_1, B_2, \ldots, B_m\} \subseteq \{A_1, A_2, \ldots, A_n\}$, then $A_1A_2 \cdots A_n \rightarrow B_1B_2 \cdots B_m$. These are what we have called trivial FD's.
- 2. Augmentation. If $A_1A_2 \cdots A_n \rightarrow B_1B_2 \cdots B_m$, then

$$A_1 A_2 \cdots A_n C_1 C_2 \cdots C_k \rightarrow B_1 B_2 \cdots B_m C_1 C_2 \cdots C_k$$

for any set of attributes C_1, C_2, \ldots, C_k .

3. Transitivity. If

 $A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m$ and $B_1 B_2 \cdots B_m \rightarrow C_1 C_2 \cdots C_k$ then $A_1 A_2 \cdots A_n \rightarrow C_1 C_2 \cdots C_k$.

Normal Forms

- Every component of every tuple is an atomic value (1NF)
- 2NF is permits transitive FD's in a relation, but forbids a nontrivial FD with a left side that is a proper subset of a key.
- If whenever A₁A₂...A_n->B is a nontrivial FD, either {A₁A₂...A_n} is superkey, or B is a member of some key (3NF)
- If whenever there is a nontrivial FD A₁A₂...A_n->B, it is case that {A₁A₂...A_n} is a superkey (BCNF)
- If whenever $A_1A_2...A_n$ ->-> $B_1B_2...B_m$ is a nontrivial MVD $A_1A_2...A_n$ ->B, $\{A_1A_2...A_n\}$ is a superkey (4NF)