
Real SQL Programming

Persistent Stored Modules (PSM)Persistent Stored Modules (PSM)
PL/SQL

Embedded SQL

1



SQL in Real Programs

We have seen only how SQL is used at 
the generic query interface --- an 
environment where we sit at a terminal 
and ask queries of a database.
Reality is almost always different:Reality is almost always different: 
conventional programs interacting with 
SQL.

2



Options

1. Code in a specialized language is 
stored in the database itself (e.g., 
PSM, PL/SQL)., / Q )

2. SQL statements are embedded in a 
host language (e g C)host language (e.g., C).

3. Connection tools are used to allow a 
conventional language to access a 
database (e.g., CLI, JDBC, PHP/DB).

3

database (e.g., CLI, JDBC, PHP/DB).



Stored Procedures

PSM, or “persistent stored modules,” 
allows us to store procedures as 
database schema elements.
PSM =  a mixture of conventional 
statements (if while etc ) and SQLstatements (if, while, etc.) and SQL.
Lets us do things we cannot do in SQL g
alone.

4



Basic PSM Form

CREATE PROCEDURE <name> (
<parameter list> )

<optional local declarations><optional local declarations>
<body>;
Function alternative:

CREATE FUNCTION <name> (CREATE FUNCTION <name> (
<parameter list> ) RETURNS <type>

5

p ) yp



Parameters in PSM

Unlike the usual name-type pairs in 
languages like C, PSM uses mode-
name-type triples, where the mode can yp p ,
be:

IN = procedure uses value does notIN = procedure uses value, does not 
change value.
OUT d h d tOUT = procedure changes, does not use.
INOUT = both.

6



Example: Stored Procedure

Let’s write a procedure that takes two 
arguments l and p, and adds a tuple to 
Sells(bar, lemonade, price) that has bar ( , , p )
= ’Joe’’s Bar’, lemonade = l, and price 
= p= p.

Used by Joe to add to his menu more 
easilyeasily.

7



The Procedure

CREATE PROCEDURE JoeMenu (
IN l CHAR(20),
IN p REAL

Parameters are both
read-only, not changedIN p REAL

)

ead o y, ot c a ged

INSERT INTO Sells
VALUES(’Joe’’s Bar’ l p);

The body ---
a single insertionVALUES(’Joe’’s Bar’, l, p); a single insertion

8



Invoking Procedures

Use SQL/PSM statement CALL, with the 
name of the desired procedure and 
arguments.g
Example: 
CALL JoeMenu(’Moosedrool’, 5.00);

Functions used in SQL expressions whereverFunctions used in SQL expressions wherever 
a value of their return type is appropriate.

9



Kinds of PSM statements – (1)

RETURN <expression> sets the return 
value of a function.

Unlike C, etc., RETURN does not terminateUnlike C, etc., RETURN does not terminate 
function execution.

DECLARE <name> <type> used toDECLARE <name> <type> used to 
declare local variables.
BEGIN . . . END for groups of statements.

Separate statements by semicolons.
10

Separate statements by semicolons.



Kinds of PSM Statements – (2)

Assignment statements:                  
SET <variable> = <expression>;

Example: SET l = ’Bud’;p ;

Statement labels: give a statement a 
label by prefixing a name and a colonlabel by prefixing a name and a colon.

11



IF StatementsIF Statements

Simplest form:                                           
IF <condition> THEN              

<statements(s)>                        
END IF;END IF;

Add ELSE <statement(s)> if desired, as       
SIF . . . THEN . . . ELSE . . . END IF;

Add additional cases by ELSEIFAdd additional cases by ELSEIF 
<statements(s)>: IF … THEN … ELSEIF … 
THEN ELSEIF THEN ELSE END IF;

12

THEN … ELSEIF … THEN … ELSE … END IF;



Example: IF

Let’s rate bars by how many customers 
th h b d F t (d i k b )they have, based on Frequents(drinker,bar).

<100 customers: ‘unpopular’.p p
100-199 customers: ‘average’.
>= 200 customers: ‘popular’>= 200 customers: popular .

Function Rate(b) rates bar b.

13



Example: IF (continued)
CREATE FUNCTION Rate (IN b CHAR(20) )

RETURNS CHAR(10) Number of
customers of( )

DECLARE cust INTEGER;
BEGIN

customers of
bar b

SET cust = (SELECT COUNT(*) FROM Frequents
WHERE bar = b);WHERE bar  b);

IF cust < 100 THEN RETURN ’unpopular’
ELSEIF cust < 200 THEN RETURN ’average’ELSEIF cust < 200 THEN RETURN average
ELSE RETURN ’popular’
END IF; Nested

14

END IF;
END; Return occurs here, not at

one of the RETURN statements

Nested
IF statement



Loops

Basic form:
<loop name>: LOOP <statements> 

END LOOP;END LOOP;
Exit from a loop by:

LEAVE <loop name>

15



Example: Exiting a Loop

loop1: LOOP
. . .
LEAVE loop1; If thi t t t i t dLEAVE loop1;
. . .

If this statement is executed . . .

END LOOP;
l d hControl winds up here

16



Other Loop Forms

WHILE <condition>                         
DO <statements>                     

END WHILE;;
REPEAT <statements>                        

UNTIL <condition>UNTIL <condition>                    
END REPEAT;

17



Queries

General SELECT-FROM-WHERE 
queries are not permitted in PSM.
There are three ways to get the effectThere are three ways to get the effect 
of a query:

1 Q i d i l b th1. Queries producing one value can be the 
expression in an assignment.

2. Single-row SELECT . . . INTO.
3. Cursors.

18



Example: Assignment/Query

Using local variable p and Sells(bar, 
lemonade, price), we can get the price Joe 
charges for Bud by:g y
SET p = (SELECT price FROM Sells

b ’ ’’ ’WHERE bar = ’Joe’’s Bar’ AND
lemonade = ’Bud’););

19



SELECT . . . INTO

Another way to get the value of a query 
that returns one tuple is by placing INTO 
<variable> after the SELECT clause.
Example:

iSELECT price INTO p FROM Sells
WHERE bar = ’Joe’’s Bar’ AND

lemonade = ’Bud’;

20



Cursors

A cursor is essentially a tuple-variable 
that ranges over all tuples in the result 
of some query.q y
Declare a cursor c by:

DECLARE CURSOR FORDECLARE c CURSOR FOR <query>;

21



Opening and Closing Cursors

To use cursor c, we must issue the 
command:

OPEN c;OPEN c;
The query of c is evaluated, and c is set 
to point to the first tuple of the resultto point to the first tuple of the result.

When finished with c, issue command:
CLOSE c;

22



Fetching Tuples From a Cursor

To get the next tuple from cursor c, 
issue command:

FETCH FROM c INTO x1 x2 xn ;FETCH FROM c INTO x1, x2,…,xn ;
The x ’s are a list of variables, one for 

h f h l f deach component of the tuples referred 
to by c.y
c is moved automatically to the next 
tuple

23

tuple.



Breaking Cursor Loops – (1)

The usual way to use a cursor is to 
create a loop with a FETCH statement, 
and do something with each tuple g p
fetched.
A tricky point is how we get out of theA tricky point is how we get out of the 
loop when the cursor has no more 
tuples to deliver.

24



Breaking Cursor Loops – (2)

Each SQL operation returns a status, 
which is a 5-digit character string.

For example, 00000 = “Everything OK,”For example, 00000  Everything OK,  
and 02000 = “Failed to find a tuple.”

In PSM we can get the value of theIn PSM, we can get the value of the 
status in a variable called SQLSTATE.

25



Breaking Cursor Loops – (3)

We may declare a condition, which is a 
boolean variable that is true if and only 
if SQLSTATE has a particular value.Q p
Example: We can declare condition 
NotFound to represent 02000 by:NotFound to represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE ’02000’;

26



Breaking Cursor Loops – (4)

The structure of a cursor loop is thus:
cursorLoop: LOOP
…
FETCH c INTO … ;
IF NotFound THEN LEAVE cursorLoop;IF NotFound THEN LEAVE cursorLoop;
END IF;
…

END LOOP;

27



Example: Cursor

Let’s write a procedure that examines 
Sells(bar, lemonade, price), and raises 
by $1 the price of all lemonades at Joe’s y $ p
Bar that are under $3.

Yes we could write this as a simpleYes, we could write this as a simple 
UPDATE, but the details are instructive 
anywayanyway.

28



The Needed Declarations

CREATE PROCEDURE JoeGouge( ) Used to hold

DECLARE theLemonade CHAR(20);
DECLARE thePrice REAL;

lemonade-price pairs
when fetching
through cursor c;

DECLARE NotFound CONDITION FOR
SQLSTATE ’02000’;SQLSTATE 02000 ;

DECLARE c CURSOR FOR
Returns Joe’s menu

(SELECT lemonade, price FROM Sells
WHERE bar = ’Joe’’s Bar’);

29

);



The Procedure BodyThe Procedure Body
BEGINBEGIN

OPEN c;
menuLoop: LOOP

Check if the recent
FETCH failed to
get a tuplep

FETCH c INTO theLemonade, thePrice;
IF NotFound THEN LEAVE menuLoop END IF;

get a tuple

p
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice + 1.00
WHERE bar = ’Joe’’s Bar’ AND lemonade = 

theLemonade;
END IF;END IF;

END LOOP;
CLOSE c;

If Joe charges less than $3 for
the lemonade, raise its price at
J ’ B b $1

30

CLOSE c;
END;

Joe’s Bar by $1.



PL/SQL

Oracle uses a variant of SQL/PSM which 
it calls PL/SQL.
PL/SQL not only allows you to create andPL/SQL not only allows you to create and 
store procedures or functions, but it can 
be run from the generic query interfacebe run from the generic query interface
(sqlplus), like any SQL statement.
Triggers are a part of PL/SQL.

31



Trigger Differences

Compared with SQL standard triggers, 
Oracle has the following differences:

1. Action is a PL/SQL statement.1. Action is a PL/SQL statement.
2. New/old tuples referenced automatically.
3 Strong constraints on trigger actions3. Strong constraints on trigger actions 

designed to make certain you can’t fire 
off an infinite sequence of triggersoff an infinite sequence of triggers.

See on-line or-triggers.html document.
32



SQLPlus

In addition to stored procedures, one 
can write a PL/SQL statement that looks 
like the body of a procedure, but is y p ,
executed once, like any SQL statement 
typed to the generic interfacetyped to the generic interface.

Oracle calls the generic interface “sqlplus.”
PL/SQL is really the “plus.”

33



Form of PL/SQL Statements

DECLARE
<declarations>

BEGIN
<statements>

END;END;
.
run

The DECLARE section is optional.
34

p



Form of PL/SQL Procedure

CREATE OR REPLACE PROCEDURE
<name> (<arguments>) AS
<optional declarations>

Notice AS
needed here

p
BEGIN

<PL/SQL statements><PL/SQL statements>
END;

.
run

Needed to store
procedure in database;
does not really run it.

35

does not really run it.



PL/SQL Declarations andPL/SQL Declarations and 
AssignmentsAssignments

The word DECLARE does not appear in 
front of each local declaration.

Just use the variable name and its type.Just use the variable name and its type.

There is no word SET in assignments, 
and : is used in place ofand := is used in place of =.

Example: x := y;

36



PL/SQL Procedure Parameters

There are several differences in the 
forms of PL/SQL argument or local-
variable declarations, compared with , p
the SQL/PSM standard:

1 Order is name mode type not mode1. Order is name-mode-type, not mode-
name-type.

2 INOUT i l d b IN OUT i PL/SQL2. INOUT is replaced by IN OUT in PL/SQL.
3. Several new types.

37



PL/SQL Types

In addition to the SQL types, NUMBER 
can be used to mean INT or REAL, as 
appropriate.pp p
You can refer to the type of attribute x
of relation R by R x%TYPEof relation R by R.x%TYPE.

Useful to avoid type mismatches.
Also, R%ROWTYPE is a tuple whose 
components have the types of R’s attributes.

38

p yp



Example:JoeMenu

Recall the procedure JoeMenu(l,p) that 
adds lemonade l at price p to the 
lemonades sold by Joe (in relation y (
Sells).
Here is the PL/SQL versionHere is the PL/SQL version.

39



Procedure JoeMenu in PL/SQL

CREATE OR REPLACE PROCEDURE JoeMenu (
l IN S ll l d %TYPEl IN Sells.lemonade%TYPE,
p IN Sells.price%TYPE Notice these types

) AS
BEGIN

ot ce t ese types
will be suitable
for the intended
uses of l and p

INSERT INTO Sells
VALUES (’Joe’’s Bar’, l, p);

uses of l and p.

VALUES ( Joe s Bar , l, p);
END;

40

.
run



PL/SQL Branching Statements

Like IF … in SQL/PSM, but:
Use ELSIF in place of ELSEIF.
Viz : IF THEN ELSIF THENViz.: IF … THEN … ELSIF … THEN … 
ELSIF … THEN … ELSE … END IF;

41



PL/SQL Loops

LOOP … END LOOP as in SQL/PSM.
Instead of LEAVE … , PL/SQL uses  

EXIT WHEN <condition>EXIT WHEN <condition>
And when the condition is that cursor c
h f d l ihas found no tuple, we can write 
c%NOTFOUND as the condition.

42



PL/SQL Cursors

The form of a PL/SQL cursor 
declaration is:                                 

CURSOR <name> IS <query>;q y ;
To fetch from cursor c, say:             

FETCH c INTO <variable(s)>;FETCH c INTO <variable(s)>;

43



Example: JoeGouge() in PL/SQL

Recall JoeGouge() sends a cursor 
through the Joe’s-Bar portion of Sells, 
and raises by $1 the price of each y $ p
lemonade Joe’s Bar sells, if that price 
was initially under $3was initially under $3.

44



Example: JoeGouge() Declarations

CREATE OR REPLACE PROCEDURE
JoeGouge() AS

theLemonde Sells.lemonade%TYPE;
thePrice Sells.price%TYPE;
CURSOR c ISCURSOR c IS

SELECT lemonade, price FROM 
S llSells

WHERE bar = ’Joe’’s Bar’;

45



Example: JoeGouge() Body
BEGIN

OPEN c;
LOOP

FETCH c INTO theLemonade, thePrice;
How PL/SQL
breaks a cursor
loop

EXIT WHEN c%NOTFOUND;
IF thePrice < 3.00 THEN

UPDATE S ll SET i th P i 1 00

oop

UPDATE Sells SET price = thePrice + 1.00;
WHERE bar = ’Joe’’s Bar’ AND lemonade = 

theLemonade;theLemonade;
END IF;

END LOOP;

Note this is a SET clause
in an UPDATE, not an assignment.
PL/SQL uses := for assignments

46

END LOOP;
CLOSE c;

END;

PL/SQL uses := for assignments.



Tuple-Valued Variables

PL/SQL allows a variable x to have a 
tuple type.
x R%ROWTYPE gives x the type of R’sx R%ROWTYPE gives x the type of R s 
tuples.
R ld b i h l iR could be either a relation or a cursor.
x.a gives the value of the componentx.a gives the value of the component 
for attribute a in the tuple x.

47



Example: Tuple TypeExample: Tuple Type
Repeat of JoeGouge() declarations withRepeat of JoeGouge() declarations with 
variable lp of type lemonade-price pairs.

CREATE OR REPLACE PROCEDURECREATE OR REPLACE PROCEDURE
JoeGouge() AS

CURSOR c IS
SELECT lemonade, price FROM SellsS C e o ade, p ce O Se s
WHERE bar = ’Joe’’s Bar’;
l %ROWTYPElp c%ROWTYPE;

48



JoeGouge() Body Using lp
BEGIN

OPEN c;
LOOP

FETCH c INTO lp;
EXIT WHEN c%NOTFOUND;
IF lp.price < 3.00 THEN

UPDATE S ll SET i l i 1 00UPDATE Sells SET price = lp.price + 1.00
WHERE bar = ’Joe’’s Bar’ AND lemonade =lp.lemonade;

END IF;END IF;
END LOOP;
CLOSE c;

Components of lp are
obtained with a dot and

49

CLOSE c;
END;

the attribute name



Embedded SQL

Key idea: A preprocessor turns SQL 
statements into procedure calls that fit 
with the surrounding host-language g g g
code.
All embedded SQL statements beginAll embedded SQL statements begin 
with EXEC SQL, so the preprocessor can 
find them easily.

50



Shared Variables

To connect SQL and the host-language 
program, the two parts must share 
some variables.
Declarations of shared variables are 
bracketed by:bracketed by:
EXEC SQL BEGIN DECLARE SECTION;

<host-language declarations>
EXEC SQL END DECLARE SECTION

Always
needed

51
EXEC SQL END DECLARE SECTION;



Use of Shared Variables

In SQL, the shared variables must be 
d d b lpreceded by a colon.

They may be used as constants provided 
b h h lby the host-language program.
They may get values from SQL statements 

d h l h hand pass those values to the host-
language program.

h h l h d blIn the host language, shared variables 
behave like any other variable.

52



Example: Looking Up Prices

We’ll use C with embedded SQL to 
sketch the important parts of a function 
that obtains a lemonade and a bar, and ,
looks up the price of that lemonade at 
that barthat bar.
Assumes database has our usual 
Sells(bar, lemonade, price) relation.

53



Example: C Plus SQL

EXEC SQL BEGIN DECLARE SECTION;
h th B [21] th L d [21]

Note 21-char
char theBar[21], theLemonade[21];
float thePrice;

Note 21 char
arrays needed
for 20 chars +
endmarker

EXEC SQL END DECLARE SECTION;
/* obtain values for theBar and theLemonade 

endmarker

*/
EXEC SQL SELECT price INTO :thePrice

FROM Sells
WHERE bar = :theBar AND lemonade = :theLemonade;

SELECT INTO
54

WHERE bar  :theBar AND lemonade  :theLemonade;

/* do something with thePrice */
SELECT-INTO
as in PSM



Embedded Queries

Embedded SQL has the same 
limitations as PSM regarding queries:

SELECT-INTO for a query guaranteed toSELECT INTO for a query guaranteed to 
produce a single tuple.
Otherwise you have to use a cursorOtherwise, you have to use a cursor.
• Small syntactic differences, but the key ideas 

are the sameare the same.

55



Cursor Statements

Declare a cursor c with:
EXEC SQL DECLARE c CURSOR FOR <query>;

Open and close cursor c with:p
EXEC SQL OPEN CURSOR c;
EXEC SQL CLOSE CURSOR c;EXEC SQL CLOSE CURSOR c;

Fetch from c by:
EXEC SQL FETCH c INTO <variable(s)>;

Macro NOT FOUND is true if and only if the FETCH 

56
fails to find a tuple.



Example: Print Joe’s Menu

Let’s write C + SQL to print Joe’s menu 
– the list of lemonade-price pairs that 
we find in Sells(bar, lemonade, price)( , , p )
with bar = Joe’s Bar.
A cursor will visit each Sells tuple thatA cursor will visit each Sells tuple that 
has bar = Joe’s Bar.

57



Example: Declarations

EXEC SQL BEGIN DECLARE SECTION;
char theLemonade[21]; float thePrice;

EXEC SQL END DECLARE SECTION;EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE c CURSOR FOR

SELECT lemonade, price FROM Sells
WHERE bar ’Joe’’s Bar’;WHERE bar = ’Joe’’s Bar’;

The cursor declaration goes

58

The cursor declaration goes
outside the declare-section



Example: Executable Part

EXEC SQL OPEN CURSOR c;
The C style

while(1) {
EXEC SQL FETCH c

The C style
of breaking
loopsQ

INTO :theLemonade, :thePrice;
if (NOT FOUND) break;if (NOT FOUND) break;
/* format and print theLemonade and thePrice */

}
EXEC SQL CLOSE CURSOR c;

59

Q ;



Need for Dynamic SQLNeed for Dynamic SQL

Most applications use specific queries 
and modification statements to interactand modification statements to interact 
with the database.

The DBMS compiles EXEC SQL … statements 
into specific procedure calls and produces an 

d h l hordinary host-language program that uses a 
library.

What about sqlplus, which doesn’t know 
what it needs to do until it runs?

60

what it needs to do until it runs?



Dynamic SQL

Preparing a query:
EXEC SQL PREPARE <query-name>

FROM <text of the query>;FROM <text of the query>;
Executing a query:

EXEC SQL EXECUTE <query-name>;
“Prepare” optimize query“Prepare” = optimize query.
Prepare once, execute many times.

61

p , y



Example: A Generic Interface

EXEC SQL BEGIN DECLARE SECTION;
h [MAX LENGTH]char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;
while(1) {

/* issue SQL> prompt */p p
/* read user’s query into array query */
EXEC SQL PREPARE q FROM :query;EXEC SQL PREPARE q FROM :query;
EXEC SQL EXECUTE q;

}
q is an SQL variable
representing the optimized

62

} form of whatever statement
is typed into :query



Execute-Immediate

If we are only going to execute the 
query once, we can combine the 
PREPARE and EXECUTE steps into one.p
Use:

EXEC SQL EXECUTE IMMEDIATEEXEC SQL EXECUTE IMMEDIATE <text>;

63



Example: Generic Interface Again

EXEC SQL BEGIN DECLARE SECTION;
h [ G ]char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;
while(1) {
/* issue SQL> prompt */
/* read user’s query into array 
query */
EXEC SQL EXECUTE IMMEDIATE :query;

}
64

}



Processing SQL statement

65
The Complete References: SQL 
By James R. Groff, Paul N. Weinberg


