Real SQL Programming

Persistent Stored Modules (PSM)
PL/SQL

Embedded SQL

SQL in Real Programs

€ We have seen only how SQL is used at
the generic query interface --- an
environment where we sit at a terminal
and ask queries of a database.

® Reality is almost always different:
conventional programs interacting with
SQL.

Options

1. Code In a specialized language Is
stored In the database itself (e.g.,
PSM, PL/SQL).

2. SQL statements are embedded In a
host language (e.g., C).

3. Connection tools are used to allow a

conventional language to access a
database (e.g., CLI, JDBC, PHP/DB).

Stored Procedures

€ PSM, or “persistent stored moaules,”
allows us to store procedures as
database schema elements.

€ PSM = a mixture of conventional
statements (if, while, etc.) and SQL.

@ Lets us do things we cannot do in SQL
alone.

Basic PSM Form

CREATE PROCEDURE <name> (
<parameter list>)
<optional local declarations>
<body>;
Function alternative:
CREATE FUNCTION <name> (
<parameter list>) RETURNS <type=>

5

Parameters in PSM

@ Unlike the usual name-type pairs in
languages like C, PSM uses mode-
name-type triples, where the /mode can
be:

* IN = procedure uses value, does not
change value.

¢ OUT = procedure changes, does not use.
+ INOUT = both.

- Stored Procedure

@ Let's write a procedure that takes two
arguments / and p, and adds a tuple to
Sells(bar, lemonade, price) that has bar
= 'Joe’”’s Bar’, lemonade = / and price
= pD.

+ Used by Joe to add to his menu more
easily.

The Procedure

CREATE PROCEDURE JoeMenu (

Parameters are both
read-only, not changed

INSERT INTO Sells sl —
VALUES('Joe”s Bar’, |, p); —asingle insertion

Invoking Procedures

@ Use SQL/PSM statement CALL, with the
name of the desired procedure and
arguments.

¢ ;
CALL JoeMenu(’Moosedrool’, 5.00);

@ Functions used in SQL expressions wherever
a value of their return type Is appropriate.

9

Kinds of PSM statements — (1)

® RETURN <expression> sets the return
value of a function.

+ Unlike C, etc., RETURN terminate
function execution.

\ Wi e 1 1

DECLARE <name> <type> used to
declare local variables.

€®BEGIN . . . END for groups of statements.
¢ Separate statements by semicolons.

10

Kinds of PSM Statements — (2)

4 :
SET <variable> = <expression>;

¢ Example: SET 1 = ?Bud?;

¢ . give a statement a
label by prefixing a name and a colon.

11

@ Simplest form:
IF <condition> THEN
<statements(s)>
END IF;

€ Add ELSE <statement(s)> if desired, as
IF... THEN ... ELSE ... END IF;

€ Add additional cases by ELSEIF
<statements(s)>: IF ... THEN ... ELSEIF ...
THEN ... ELSEIF ... THEN ... ELSE ... END IF;

- |F

@ Let’s rate bars by how many customers
they have, based on Frequents(drinker,bar).

¢+ <100 customers: ‘unpopular’.
+ 100-199 customers: ‘average’.
¢+ >= 200 customers: ‘popular’.

@ Function Rate(b) rates bar b.

13

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))

RETURNS CHAR(10) e

DECLARE cust INTEGER: S s
BEGIN

SET cust =

IF cust < 100 THEN RETURN ’unpopular’
ELSEIF cust < 200 THEN RETURN 'average’

ELSE RETURN "popular’ AN

END IF; Nested

END:l« Return occurs here, not at IF Stal’ﬁement
one of the RETURN statements

Loops

¥ Basic form:

<loop name>: LOOP <statements>
END LOOP;

@ Exit from a loop by:
LEAVE <loop name>

15

. Exiting a Loop

loopl: LOOP
LEAVE |OOp1; «—— If this statement is executed . . .

END LOOP;

Control winds up here

16

Other Loop Forms

€ WHILE <condition>
DO <statements>
END WHILE;

® REPEAT <statements=>
UNTIL <condition>
END REPEAT;

17

Queries

€ General SELECT-FROM-WHERE
gueries are permitted in PSM.

€ There are three ways to get the effect
of a query:
1. Queries producing one value can be the
expression in an assignment.
2. Single-row SELECT . . . INTO.

3. Cursors.

18

. Assignment/Query

@ Using local variable p and Sells(bar,
lemonade, price), we can get the price Joe
charges for Bud by:

SET p = (SELECT price FROM Sells
WHERE bar = *Joe”’s Bar” AND
lemonade = ’Bud’);

19

SELECT ... INTO

€ Another way to get the value of a query
that returns one tuple is by placing INTO
<variable= after the SELECT clause.

4 ;
SELECT price INTO p FROM Sells

WHERE bar = *Joe’’s Bar’> AND
lemonade = ’Bud’;

20

cursors

@ A cursor is essentially a tuple-variable
that ranges over all tuples In the result
of some query.

@ Declare a cursor ¢ hy:
DECLARE ¢ CURSOR FOR <query=>;

21

Opening and Closing Cursors

& To use cursor ¢, we must issue the
command:

OPEN c;

* The query of ¢ Is evaluated, and ¢ Is set
to point to the first tuple of the result.

® \When finished with ¢, issue command:
CLOSE c;

22

Fetching Tuples From a Cursor

€ To get the next tuple from cursor c,
Issue command:

FETCH FROM c INTO x1, x2,....X1 ;

& The x’s are a list of variables, one for
each component of the tuples referred
to by c.

@ c is moved automatically to the next
tuple.

23

Breaking Cursor Loops — (1)

€ The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple
fetched.

@ A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver.

24

Breaking Cursor Loops — (2)

€ Each SQL operation returns a status,
which Is a 5-digit character string.

¢ For example, 00000 = “Everything OK,”
and 02000 = “Falled to find a tuple.”

\W. W Ve 'aYe Y o) N N\

status in a variable called SQLSTATE.

25

Breaking Cursor Loops — (3)

® We may declare a condition, which is a
boolean variable that is true If and only
If SOLSTATE has a particular value.

¢ : We can declare condition
NotFound to represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE ~020007 ;

26

Breaking Cursor Loops — (4)

® The structure of a cursor loop is thus:
cursorLoop: LOOP

c INTO .. ;
IC NAntLCnriindAd THEN | EAV\/V/E H~1ivenvl non
| INU LT UUl IuU 11 1LIN LLLL\VIL. CUUl OUIl LUUP,
END IF;

END LOOP;

27

: Cursor

@ Let's write a procedure that examines
Sells(bar, lemonade, price), and raises
by $1 the price of all lemonades at Joe’s
Bar that are under $3.

* Yes, we could write this as a simple
UPDATE, but the detalils are instructive

anyway.

28

The Needed Declarations

CREATE PROCEDURE JoeGouge Usediamn

lemonade-price pairs
when fetching
through cursor c

DECLARE NotFound CONDITION FOR

NI CTATE 'NHONNN’ -
DLJLD IATE UZUUU ,

DECLARE c CURSOR FOR / Returns Joe's menu
SELECT |lemonade; pricEsi= i

WHERE bar = 'Joe’’s Bar’);

29

Tl A~ DerrasasAl A
| N€ Froceaure boay
BEGIN
OPEN c: Check if the recent
’ FETCH failed t
menuLoop: LOOP getatus;ee 0

FETCH c INTO theLemonade, thePrice; -
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice + 1.00

WHERE bar = 'Joe’”s Bar’ AND lemonade =
thelemonade:

END IF; R
END LOOP: If Joe charges Ies_s than $_3 for
the lemonade, raise its price at
CLOSE c; Joe’s Bar by $1.

END; 30

PL/SQL

@ Oracle uses a variant of SQL/PSM which
It calls PL/SQL.

€ PL/SQL not only allows you to create and
store procedures or functions, but it can
be run from the generic query interface
(sqlplus), like any SQL statement.

& Triggers are a part of PL/SQL.

31

Trigger Differences

€ Compared with SQL standard triggers,
Oracle has the following differences:

1. Action is a PL/SQL statement.
2. New/old tuples referenced automatically.

3. Strong constraints on trigger actions
designed to make certain you can’t fire
off an infinite sequence of triggers.

€ See on-line or-triggers.html document.

32

SQLPIlus

® In addition to stored procedures, one
can write a PL/SQL statement that looks
like the body of a procedure, but Is
executed once, like any SQL statement
typed to the generic interface.
* Oracle calls the generic interface “sqlplus.”

* PL/SQL Is really the “plus.”

33

Form of PL/SQL Statements

DECLARE
<declarations>

BEGIN
<statements=>

NI
END);

run
€ The DECLARE section is optional.

34

Form of PL/SQL Procedure

CREATE OR REPLACE PROCEDURE
<name> (<arguments>)|AS —__ Notice AS
_ _ needed here
<optional declarations>
BEGIN

n

END;

| "' W o W "o

N\l -‘-n-‘- ~ o~
SUVUL stalclliclito—

Needed to store
. —— procedure in database;

run does not really run it.

35

| " | "

CN\I lavratinne AanA
O\JL Ciarations anda
ASS|gnments

€ The word DECLARE does not appear in
front of each local declaration.

¢ Just use the variable name and its type.

® There is no word SET in assignments,
and :=Is used In place of =.
¢ X =Y

v
|

36

PL/SQL Procedure Parameters

€ There are several differences in the
forms of PL/SQL argument or local-
variable declarations, compared with
the SQL/PSM standard:

1. Order is name-mode-type, not mode-
name-type.

2. INOUT is replaced by IN OUT in PL/SQL.
3. Several new types.

37

PL/SQL Types

€ In addition to the SQL types, NUMBER
can be used to mean INT or REAL, as
appropriate.

@ You can refer to the type of attribute x
of relation # by R.x%TYPE.
+ Useful to avoid type mismatches.

* Also, R®%ROWTYPE Is a tuple whose
components have the types of R’s attributes.

38

Example:JoeMenu

@ Recall the procedure JoeMenu(l,p) that
adds lemonade / at price p to the
lemonades sold by Joe (in relation
Sells).

& Here is the PL/SQL versi

m»
Cb
-

39

Procedure JoeMenu In PL/SQL

CREATE OR REPLACE PROCEDURE JoeMenu (
| IN |Sells.lemonade%TYPE|

P IN|Sells.price%TYPE \ Notice these types

) AS will be suitable
for the intended
BEGIN uses of /and p.

INSERT INTO Sells
VALUES (‘Joe”s Bar’, |, p);
END;

40

run

PL/SQL Branching Statements

@ Like IF ... in SQL/PSM, but:
@ Use ELSIF in place of ELSEIF.

@®Viz.: IF ... THEN ... ELSIF ... THEN ...
ELSIF ... THEN ... ELSE ... END IF;

41

PL/SQL Loops

@ LOOP ... END LOOP as in SQL/PSM.

@ Instead of LEAVE ... , PL/SQL uses
EXIT WHEN <condition>

& And when the condition is that cursor ¢
has found no tuple, we can write
c%NOTFOUND as the condition.

42

PL/SQL Cursors

@ The form of a PL/SQL cursor
declaration Is:
CURSOR <name> IS <query>;

@ To fetch from cursor c, say:

—

FETCH ¢ INTO <variable(s)>;

43

. JoeGouge() In PL/SQL

@ Recall JoeGouge() sends a cursor
through the Joe’s-Bar portion of Sells,
and raises by $1 the price of each
lemonade Joe’s Bar sells, if that price
was initially under $3.

44

. JoeGouge() Declarations

CREATE OR REPLACE PROCEDURE
JoeGouge() AS
theLemonde Sells.lemonade%TYPE;
thePrice Sells._price%TYPE;

CURSOR ¢ IS

SELECT lemonade, price FROM
Sells

WHERE bar = ?Joe’’s Bar’;

45

. JoeGouge() Body

BEGIN

OPEN c;

LOOP How PL/SQL
FETCH ¢ INTO theLemonade:WC ;gsks 2
EXIT WHEN c%NOTFOUND;

IF thePrice < 3.00 THEN
UPDATE Sells SET price = thePrice + 1.00;
WHERE bar = 'Joe”s Bat® AND lemonade =

theLemonade;
END IF: !\Iote this is a SET clause |
_ In an UPDATE, not an assignment.
END LOOP; PL/SQL uses .= for assignments.
CLOSE c; 46

END;

Tuple-Valued Variables

@ PL/SQL allows a variable x to have a
tuple type.

€® x R%ROWTYPE gives x the type of R’s
tuples.

® R could be either a relation or a cursor.

® x.a gives the value of the component
for attribute a In the tuple x.

47

= T
5 |

Nnla Ty
U|JIC |

yp€

@ Repeat of JoeGouge() declarations with
variable /p of type lemonade-price pairs.

CREATE OR REPLACE PROCEDURE
JoeGouge() AS
CURSOR c 1S
SELECT lemonade, price FROM Sells
WHERE bar = *Joe’’s Bar’;
Ip c%ROWTYPE;

48

JoeGouge() Body Using /p

BEGIN
OPEN c;
LOOP
FETCH c INTO Ip;
EXIT WHEN c%NOTFOUND;
IF| Ip.price € 3.00 THEN

UPDA ells SET price =|Ip.price + 1.00
WHERE bar = 'Joets Bar AND Iemona/e :lp.lemonad ,
END IF; 7

END LOOP; Components of Ip are
CLOSE c: obtained with a dot and

the attribute name
END; 49

Embedded SQL

¢ . A preprocessor turns SQL
statements into procedure calls that fit
with the surrounding host-language
code.

& All embedded SQL state
with EXEC SQL, so the pr
find them easily.

P

ments begin
eprocessor can

50

Shared Variables

€ To connect SQL and the host-language
program, the two parts must share
some variables.

® Declarations of shared variables are
bracketed by:
_~EXEC SOQL BEGIN DECLARE SECTION;

Always

et <host-language declarations>
“NEXEC SOQL| END DECLARE SECTION;

o1

Use of Shared Variables

€ In SQL, the shared variables must be
preceded by a colon.

* They may be used as constants provided
by the host-language program.

* They may get values from SQL statements
and pass those values to the host-
language program.

@ In the host language, shared variables
behave like any other variable.

52

. Looking Up Prices

& \We'll use C with embedded SQL to
sketch the important parts of a function
that obtains a lemonade and a bar, and
looks up the price of that lemonade at
that bar.

® Assumes database has our usual
Sells(bar, lemonade, price) relation.

53

Example: C Plus SQL

EXEC SQL BEGIN DECLARE SECTION; o,
char \theBar[Zl], theLemonade[21]; Sﬁffys ﬁ'ecedagd

float thePrice; fOdeO le(lars +
enamarker
EXEC SQL END DECLARE SECTION;
/* obtain values for theBar and theLemonade

*

EXEC SQL SELECT price INTO :thePrice

FROM Sells

WHERE bar = :theBar AND Iemo'%di:tg%%omﬂq;o
/* do something with thePrice */ as in PSM 54

Embedded Queries

¥ Embedded SQL has the same
limitations as PSM regarding queries:

¢ SELECT-INTO for a query guaranteed to
produce a single tuple.

¢ ﬁfhar\l\neo /N1 | hg\ tNn 110
UUICTVWISE, YOU | lave 10 US

» Small syntactic differences, but the key ideas
are the same.

a flircny
A LUl OVl .

95

cursor Statements

@ Declare a cursor ¢ with:

EXEC SQL DECLARE ¢ CURSOR FOR <query=;
€ Open and close cursor ¢ with:

EXEC SQL OPEN CURSOR c:

CC NIIDCND ~-
I:/\I:b D\JL bLUDE LUROURN (,

@ Fetch from ¢ by:

EXEC SQL FETCH c INTO <variable(s)>;

¢+ Macro NOT FOUND is true if and only if the FETCH

fails to find a tuple. 6
5

- Print Joe’s Menu

@ Let's write C + SQL to print Joe’s menu
— the list of lemonade-price pairs that
we find In Sells(bar, lemonade, price)
with bar = Joe’s Bar.

| — --I | P

@® A cursor will visit eac lIs tuple tha
has bar = Joe’s Bar.

57

Example: Declarations

EXEC SQL BEGIN DECLARE SECTION;
char theLemonade[21]; float thePrice;
EXEC SQL END DECLARE SECTION,;

The cursor declaration goes

outside the declare-section -

- Executable Part

EXEC SQL OPEN CURSOR c;
The C style

while(1) {[f of breaking

EXEC SQL FETCH ¢ s
INTO :theLemonade/ :thePrice;

T CNINDY hraal, -
I I‘UUI\ILJ) UIUClK

/* format and print theLemonade and thePrice */

}
EXEC SQL CLOSE CURSOR c;

59

kl AI "IAAIAAIA

Need for Dynamic SQL

€ Most applications use specific queries
and modification statements to interact
with the database.

* The DBMS compiles EXEC SQL ... statements
Into specific procedure calls and produces an
ordinary host-language program that uses a
library.

€ What about sqlplus, which doesn’t know
what It needs to do until it runs?

60

Dynamic SQL

@ Preparing a query:

EXEC SQL PREPARE <query-name=
FROM <text of the query>;

€ Executing a query:

EXEC SQL EXECUTE <query-name=>,;

€ “Prepare” = optimize query.

®Prepare once, execute many times.

61

- A Generic Interface

EXEC SQL BEGIN DECLARE SECTION,;
char query[MAX_LENGTH];
EXEC SQL END DECLARE SECTION;
while(1) {
/* 1ssue SQL> prompt */
/* read user’s query into array query */
EXEC SQL PREPARE| g FROM :query;
EXEC SQL EXECUTE| g \ g is an SQL variable

} representing the optimized
form of whatever statement
is typed into :query ©2

Execute-lmmediate

@ If we are only going to execute the
guery once, we can combine the
PREPARE and EXECUTE steps into one.

® Use:
EXEC SQL EXECUTE IMMEDIATE <text>;

63

. Generic Interface Again

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX LENGTH];
EXEC SQL END DECLARE SECTION;
while(1l) {
/™ 1ssue SQL> prompt */
/* read user’s query Into array
query */
EXEC SQL EXECUTE IMMEDIATE :query;

}

64

Processing SQL statement

SOOI statement Static SQI. Dynamic SQL
SELECT A, B, C + } + 1
FROM X, ¥
WHERE A < 5000
AND C = “ABC’
Precompiler
{ Parse statement)
w
4 E &
(‘n"ﬂ.lidate :it.atﬂ':m.t) 4
:.E-. = PREFPARE
L E E statement
(Clpl:lmme mtenwnt) ~ BIND .5
utility | EXECUTE
i : IMMEDIATE
G;enemte applicaion p].un) statement
Plan b
Binary form of ¥ L
SOL statement f, T
f Execution BRECULE
r e staterment
> P =
(th'r:utcappllmhmplﬂn) _*_____i___ REE T

The Complete References: SQL
By James R. Groff, Paul N. Weinberg

