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Functional Dependencies

X ->Y is an assertion about a relation R that 
h t t l f R ll thwhenever two tuples of R agree on all the 

attributes of X, then they must also agree on 
ll tt ib t i t Yall attributes in set Y.

Say “X ->Y holds in R.”
Convention: …, X, Y, Z represent sets of 
attributes; A, B, C,… represent single attributes.
C ti t f i t f tt ib tConvention: no set formers in sets of attributes, 
just ABC, rather than {A,B,C }.
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Splitting Right Sides of FD’s

X->A1A2…An holds for R exactly when 
each of X->A1, X->A2,…, X->An hold 
for R.
Example: A->BC is equivalent to A->B 
and A >Cand A->C.
There is no splitting rule for left sides.p g
We’ll generally express FD’s with 
singleton right sides
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Example: FD’s

Drinkers(name, addr, lemonadesLiked, 
manf, favLemonade)
Reasonable FD’s to assert:Reasonable FD s to assert:

1. name -> addr favLemonade
N t thi FD i th ddNote this FD is the same as name -> addr
and name -> favLemonade.

2 l d Lik d > f2. lemonadesLiked -> manf
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Example: Possible Data

name addr lemonadesLiked  manf favLemonade
Janeway Voyager Bud A B WickedAleJaneway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Budp p

Because name -> addr Because name -> favLemonade

Because lemonadesLiked -> manf
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Keys of Relations

K is a superkey for relation R if       
K functionally determines all of R.
K is a key for R if K is a superkeyK is a key for R if K is a superkey, 
but no proper subset of K is a 
superkeysuperkey.
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Example: Superkey

Drinkers(name, addr, lemonadesLiked, 
manf, favLemonade)
{name lemonadesLiked} is a superkey{name, lemonadesLiked} is a superkey 

because together these attributes 
determine all the other attributesdetermine all the other attributes.

name -> addr favLemonades
lemonadesLiked -> manf
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Example: Key

{name, lemonadesLiked} is a key
because neither {name} nor 
{lemonadesLiked} is a superkey.{ } p y

name doesn’t -> manf; lemonadesLiked
doesn’t -> addrdoesn t > addr.

There are no other keys, but lots of 
ksuperkeys.

Any superset of {name, lemonadesLiked}.
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Where Do Keys Come From?

1. Just assert a key K.
The only FD’s are K -> A for all 
attributes A.

2. Assert FD’s and deduce the keys by 
systematic explorationsystematic exploration.
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More FD’s From “Physics”

Example: “no two courses can meet in 
the same room at the same time” tells 
us: hour room -> course.
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Inferring FD’s

We are given FD’s X1 -> A1, X2 -> A2,…, 
Xn -> An , and we want to know whether 
an FD Y -> B must hold in any relation y
that satisfies the given FD’s.

Example: If A > B and B > C hold surelyExample: If A -> B and B -> C hold, surely 
A -> C holds, even if we don’t say so.

I t t f d i f d l tiImportant for design of good relation 
schemas.
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Inference Test

To test if Y -> B, start by assuming two 
tuples agree in all attributes of Y.

Y
0000000. . . 0
00000?? ?00000?? . . . ?
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Inference Test – (2)

Use the given FD’s to infer that these 
tuples must also agree in certain othertuples must also agree in certain other 
attributes.

If B is one of these attributes, then Y -> B
is true.
Otherwise, the two tuples, with any forced 
equalities, form a two-tuple relation that equa t es, o a t o tup e e at o t at
proves Y -> B does not follow from the 
given FD’s.
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Closure Test

An easier way to test is to compute the 
closure of Y, denoted Y +.
Basis: Y + = YBasis: Y = Y.
Induction: Look for an FD’s left side X
h i b f h Y Ifthat is a subset of the current Y +.  If 

the FD is X -> A, add A to Y +.
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Finding All Implied FD’s
Motivation: “normalization,” the process 
where we break a relation schema intowhere we break a relation schema into 
two or more schemas.
E l ABCD ith FD’ AB CExample: ABCD with FD’s AB ->C,         
C ->D, and D ->A.

Decompose into ABC, AD.  What FD’s hold in 
ABC ?
Not only AB ->C, but also C ->A !
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Why?

ABCD a b cd a b cd d =d becauseABCD a1b1cd1 a2b2cd2

comes

d1=d2 because
C -> D

comes
from a1=a2 because

D -> A
a1b1cABC a2b2c

Thus, tuples in the projection
with equal C’s have equal A’s;
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Basic Idea

1. Start with given FD’s and find all 
nontrivial FD’s that follow from the 
given FD’s.g

Nontrivial = right side not contained in 
the leftthe left.

2. Restrict to those FD’s that involve only 
tt ib t f th j t d hattributes of the projected schema.
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Simple, Exponential Algorithm

1. For each set of attributes X, compute X +.
2. Add X ->A for all A in X + - X.
3 However drop XY ->A whenever we3. However, drop XY >A whenever we 

discover X ->A.
B XY A f ll f X A iBecause XY ->A follows from X ->A in any 
projection.

4. Finally, use only FD’s involving projected 
attributes.
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A Few Tricks

No need to compute the closure of the 
empty set or of the set of all attributes.
If we find X + = all attributes so is theIf we find X = all attributes, so is the 
closure of any superset of X.
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Example: Projecting FD’s

ABC with FD’s A ->B and B ->C.  
P j t t ACProject onto AC.

A +=ABC ; yields A ->B, A ->C.; y ,
• We do not need to compute AB + or AC +.

B +=BC ; yields B ->C.B BC ; yields B >C.
C +=C ; yields nothing.
BC + BC ields nothingBC +=BC ; yields nothing.
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Example -- Continued

Resulting FD’s: A ->B, A ->C, and       
B ->C.
Projection onto AC : A ->CProjection onto AC : A >C.

Only FD that involves a subset of {A,C }.
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A Geometric View of FD’s

Imagine the set of all instances of a 
particular relation.
That is all finite sets of tuples thatThat is, all finite sets of tuples that 
have the proper number of 
componentscomponents.
Each instance is a point in this space.p p
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Example: R(A,B)

{(1,2), (3,4)}

{} {(5,1)}{} {( , )}

{(1,2), (3,4), (1,3)}
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An FD is a Subset of Instances

For each FD X -> A there is a subset 
of all instances that satisfy the FD.
We can represent an FD by a region inWe can represent an FD by a region in 
the space.
T i i l FD FD h i dTrivial FD = an FD that is represented 
by the entire space.y p

Example: A -> A.
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Example: A -> B for R(A,B)

{(1,2), (3,4)}

{} {(5,1)}
A -> B

{} {( , )}

{(1,2), (3,4), (1,3)}
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Representing Sets of FD’s

If each FD is a set of relation instances, 
then a collection of FD’s corresponds to 
the intersection of those sets.

Intersection = all instances that satisfy all 
of the FD’sof the FD s.
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Example
Instances satisfying
A->B, B->C, and, ,
CD->A

A->B
B >CB->C

CD ACD->A
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Implication of FD’s

If an FD Y -> B follows from FD’s      
X A X A th th i iX1 -> A1,…,Xn -> An , then the region in 
the space of instances for Y -> B must 
i l d th i t ti f th iinclude the intersection of the regions 
for the FD’s Xi -> Ai .

That is, every instance satisfying all the 
FD’s Xi -> Ai surely satisfies Y -> B.
But an instance could satisfy Y -> B, yet 
not be in this intersection.
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Example

A >B B CA >CA->B B->CA->C
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Relational Schema Design

Goal of relational schema design is to 
avoid anomalies and redundancy.

Update anomaly : one occurrence of a factUpdate anomaly : one occurrence of a fact 
is changed, but not all occurrences.
Deletion anomaly : valid fact is lost when aDeletion anomaly : valid fact is lost when a 
tuple is deleted.
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Example of Bad Design

Drinkers(name, addr, lemonadesLiked, manf, favLemonade)

name addr lemonadesLiked manf favLemonade
Janeway Voyager Bud A B WickedAleJaneway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete’s ???
Spock Enterprise Bud ??? Budp p

Data is redundant, because each of the ???’s can be figured, g
out by using the FD’s name -> addr favLemonade and
lemonadesLiked -> manf. 
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This Bad Design AlsoThis Bad Design Also
Exhibits AnomaliesExhibits Anomalies

name addr lemonadesLiked manf favLemonade
Janeway Voyager Bud A B WickedAleJaneway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Budp p

• Update anomaly: if Janeway is transferred to Intrepid,p y y p ,
will we remember to change each of her tuples?

• Deletion anomaly: If nobody likes Bud, we lose track
f th f t th t A h B h f t B d
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Boyce-Codd Normal Form 

We say a relation R is in BCNF if 
whenever X ->Y is a nontrivial FD that 
holds in R, X is a superkey., p y

Remember: nontrivial means Y is not 
contained in Xcontained in X.
Remember, a superkey is any superset of 
a key (not necessarily a proper superset)a key (not necessarily a proper superset).
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Example

Drinkers(name, addr, lemonadesLiked, manf, favLemonade)
FD’ dd f L d l d Lik d fFD’s: name->addr favLemonade,   lemonadesLiked->manf

Only key is {name, lemonadesLiked}.
In each FD, the left side is not a 
superkeysuperkey.
Any one of these FD’s shows Drinkers is 
not in BCNF
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Another Example

Lemonades(name, manf, manfAddr)
FD’s: name->manf,   manf->manfAddr

Only key is {name}Only key is {name} .
name->manf does not violate BCNF, but 
manf->manfAddr does.
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Decomposition into BCNF

Given: relation R with FD’s F.
Look among the given FD’s for a BCNF 
violation X ->Yviolation X >Y.

If any FD following from F violates BCNF, 
then there will surely be an FD in F itselfthen there will surely be an FD in F itself 
that violates BCNF.

Compute X +.
Not all attributes, or else X is a superkey.
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Decompose R Using X  -> Y

Replace R by relations with schemas:
1. R1 = X +.
2. R2 = R – (X + – X ).2. R2  R (X X ).
Project given FD’s F onto the two 

l tinew relations.
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Decomposition Picture

R1

R-X + X X +-X

R2

RR
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Example: BCNF DecompositionExample: BCNF Decomposition

Drinkers(name, addr, lemonadesLiked, manf, favLemonade)
F = name->addr, name -> favLemonade,

l d ik d flemonadesLiked->manf
Pick BCNF violation name->addr.
Close the left side: {name}+ = {name, addr, 
favLemonade}.
Decomposed relations:

1. Drinkers1(name, addr, favLemonade)( , , )
2. Drinkers2(name, lemonadesLiked, manf)
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Example -- Continued

We are not done; we need to check 
D i k 1 d D i k 2 f BCNFDrinkers1 and Drinkers2 for BCNF.
Projecting FD’s is easy here.j g y
For Drinkers1(name, addr, favLemonade), 
relevant FD’s are name->addr andrelevant FD s are name >addr and   
name->favLemonade.

Th { } i th l k d D i k 1 iThus, {name} is the only key and Drinkers1 is 
in BCNF.
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Example -- Continued

For Drinkers2(name, lemonadesLiked, manf), 
th l FD i l d Lik d f dthe only FD is lemonadesLiked->manf, and 
the only key is {name, lemonadesLiked}.

Violation of BCNF.
lemonadesLiked+ = {lemonadesLiked, { ,
manf}, so we decompose Drinkers2 into:

1. Drinkers3(lemonadesLiked, manf)1. Drinkers3(lemonadesLiked, manf)
2. Drinkers4(name, lemonadesLiked)
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Example -- Concluded

The resulting decomposition of Drinkers :
1. Drinkers1(name, addr, favLemonade)
2. Drinkers3(lemonadesLiked, manf)
3. Drinkers4(name, lemonadesLiked)

Notice: Drinkers1 tells us about drinkers, 
Drinkers3 tells us about lemonades, and 
Drinkers4 tells us the relationship between 
drinkers and the lemonades they like.
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Third Normal Form -- Motivation

There is one structure of FD’s that 
causes trouble when we decomposecauses trouble when we decompose.
AB ->C and C ->B.

Example: A = street address, B = city,      
C = zip code.C  zip code.

There are two keys, {A,B } and {A,C }.
C ->B is a BCNF violation, so we must 
decompose into AC, BC. 
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We Cannot Enforce FD’s

The problem is that if we use AC and 
BC as our database schema, we cannot 
enforce the FD AB ->C by checking y g
FD’s in these decomposed relations.
Example with A street B city andExample with A = street, B = city, and 
C = zip on the next slide.
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An Unenforceable FD

street zip
545 Tech Sq 02138

city zip
C b id 02138545 Tech Sq. 02138

545 Tech Sq. 02139
Cambridge 02138
Cambridge 02139

Join tuples with equal zip codes.

t t it istreet city zip
545 Tech Sq. Cambridge 02138
545 Tech Sq Cambridge 02139545 Tech Sq. Cambridge 02139

Although no FD’s were violated in the decomposed relations,

46
FD street city -> zip is violated by the database as a whole.



3NF Let’s Us Avoid This Problem

3rd Normal Form (3NF) modifies the 
BCNF condition so we do not have to 
decompose in this problem situation.p p
An attribute is prime if it is a member 
of any keyof any key.
X ->A violates 3NF if and only if X is not y
a superkey, and also A is not prime.
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Example: 3NF

In our problem situation with FD’s     
AB ->C and C ->B, we have keys AB
and AC.
Thus A, B, and C are each prime.
Al h h C B i l BCNF i dAlthough C ->B violates BCNF, it does 
not violate 3NF.
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What 3NF and BCNF Give You

There are two important properties of a 
decomposition:

1. Lossless Join : it should be possible to project1. Lossless Join : it should be possible to project 
the original relations onto the decomposed 
schema, and then reconstruct the original.schema, and then reconstruct the original.

2. Dependency Preservation : it should be 
possible to check in the projected relationspossible to check in the projected relations 
whether all the given FD’s are satisfied.
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3NF and BCNF -- Continued

We can get (1) with a BCNF decomposition.
We can get both (1) and (2) with a 3NF 
decompositiondecomposition.
But we can’t always get (1) and (2) with a 
BCNF d i iBCNF decomposition.

street-city-zip is an example.y p p
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Testing for a Lossless Join

If we project R onto R1, R2,…, Rk , can 
we recover R by rejoining?
Any tuple in R can be recovered fromAny tuple in R can be recovered from 
its projected fragments.
S h l i i hSo the only question is: when we 
rejoin, do we ever get back something j g g
we didn’t have originally?
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The Chase Test

Suppose tuple t comes back in the 
join.
Then t is the join of projections ofThen t is the join of projections of 
some tuples of R, one for each Ri of 
the decompositionthe decomposition.
Can we use the given FD’s to show that g
one of these tuples must be t ?
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The Chase – (2)

Start by assuming t = abc… .
For each i, there is a tuple si of R that 
has a b c in the attributes of Rihas a, b, c,… in the attributes of Ri.
si can have any values in other 

ibattributes.
We’ll use the same letter as in t, butWe ll use the same letter as in t, but 
with a subscript, for these components.
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Example: The Chase

Let R = ABCD, and the decomposition 
be AB, BC, and CD.
Let the given FD’s be C->D and B ->ALet the given FD s be C >D and B >A.
Suppose the tuple t = abcd is the join 
f l j d AB BC CDof tuples projected onto AB, BC, CD.

54



The tuples
of R pro-

The Tableau
of R pro-
jected onto
AB, BC, CD.

A B C D

, ,

a b c1 d1

a b c d daa2 b c d2

a3 b3 c d
da

Use C->DUse B ->A Use C >DUse B >A
We’ve proved the
second tuple must be t.
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Summary of the Chase

1. If two rows agree in the left side of a FD, make 
th i i ht id ttheir right sides agree too.

2. Always replace a subscripted symbol by the 
corresponding unsubscripted one, if possible.

3. If we ever get an unsubscripted row, we know g p ,
any tuple in the project-join is in the original (the 
join is lossless).j )

4. Otherwise, the final tableau is a counterexample.
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Example: Lossy Join

Same relation R = ABCD and same 
decomposition.
But with only the FD C->DBut with only the FD C >D. 
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The TableauThese projections
rejoin to form
b d

A B C D
abcd.

a b c1 d1

a b c d da2 b c d2

a3 b3 c d
d

Use C->DThese three tuples are an example Use C >Dp p
R that shows the join lossy.  abcd
is not in R, but we can project and

j i t t b d
58
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3NF Synthesis Algorithm

We can always construct a decomposition 
into 3NF relations with a lossless join and 
dependency preservation.p y p
Need minimal basis for the FD’s:

1 Ri ht id i l tt ib t1. Right sides are single attributes.
2. No FD can be removed.
3. No attribute can be removed from a left side.
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Constructing a Minimal Basis

1. Split right sides.
2. Repeatedly try to remove an FD and 

see if the remaining FD’s aresee if the remaining FD s are 
equivalent to the original.

3 R dl ib3. Repeatedly try to remove an attribute 
from a left side and see if the resulting g
FD’s are equivalent to the original.
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3NF Synthesis – (2)

One relation for each FD in the minimal 
basis.

Schema is the union of the left and rightSchema is the union of the left and right 
sides.

If no key is contained in an FD thenIf no key is contained in an FD, then 
add one relation whose schema is some 
kkey.
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Example: 3NF Synthesis

Relation R = ABCD.
FD’s A->B and A->C.
Decomposition: AB and AC from theDecomposition: AB and AC from the 
FD’s, plus AD for a key. 
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Why It WorksWhy It Works

Preserves dependencies: each FD from 
a minimal basis is contained in aa minimal basis is contained in a 
relation, thus preserved.
L l J i th h t hLossless Join: use the chase to show 
that the row for the relation that 
contains a key can be made all-
unsubscripted variables.unsubscripted variables.
3NF: hard part – a property of minimal 
bases
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