Fuzzy if-then rules

- •Associates a condition described using linguistic variables and fuzzy sets to a conclusion
- •A scheme for capturing knowledge that involves imprecision

Two types of fuzzy rules

- Fuzzy mapping rules
 - A functional mapping relationship between inputs and an output using linguistic terms
 - Function approximation in system identification and artificial neural network
- Fuzzy implication rules
 - A generalized logic implication relationship between two logic formula
 - Related to classical two-valued logic and multivalued logic

Fuzzy implication rules

- A generalization of 'implication' in two value logic.
- To reason with ideas and statements that are imprecise.

Given: Jack's IQ is High → Jack is Smart. Jack's IQ is somewhat High.

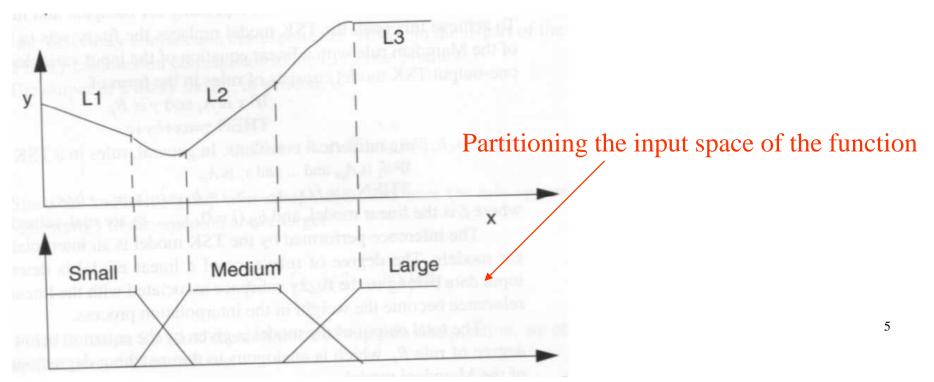
Infer: Jack is somewhat Smart.

Fuzzy mapping rules

- Function approximation techniques
 - Global modeling
 - Using one mathematical structure
 - Linear, second-order polynomial
 - Local modeling
 Fuzzy rule-based function approximation
 - Superimposition functions (B-splines, Taylor expansions)
 - Partition-based approximate
 - Partitioning the input space of the function and approximate the function in each partitioned region

Fuzzy rule-based function approximation

- Fuzzy partition
 - Allowing a sub region to partially overlap with neighboring sub region



Partial matching

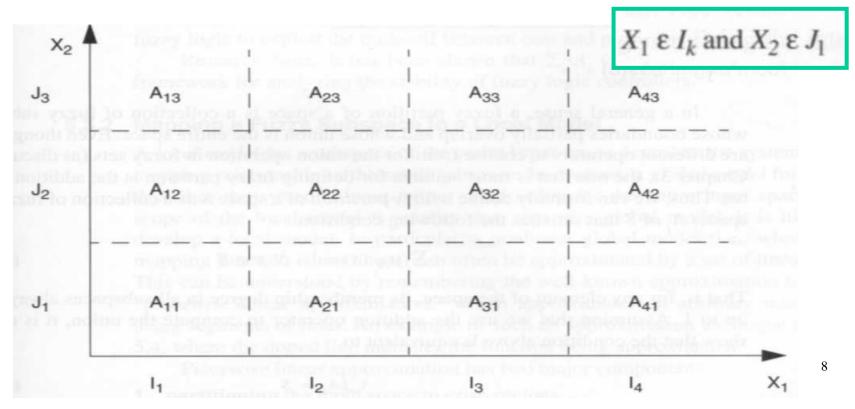
• Calculate the matching degree between a fuzzy input A' and a fuzzy condition A

Fuzzy rule-based models

- Fuzzy partition
- Mapping of fuzzy sub regions to local model
- Fusing of multiple local models
- Defuzzification

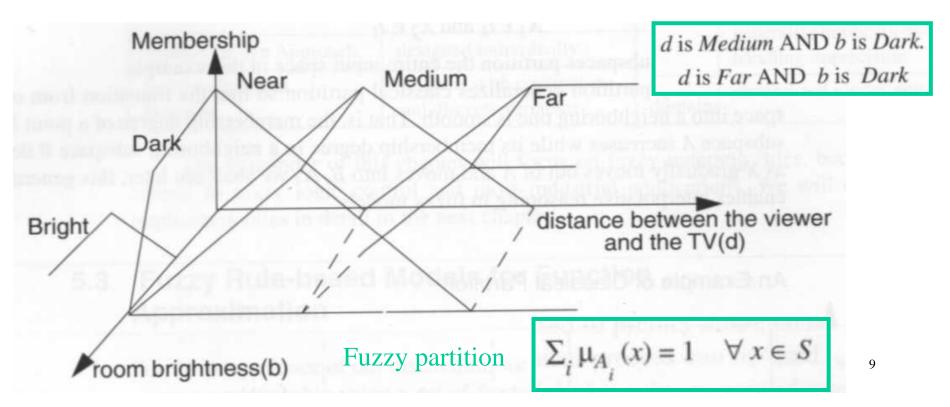
Classical partition

• A classical partition of a space is a collection of disjoint subspaces whose union is the entire space.



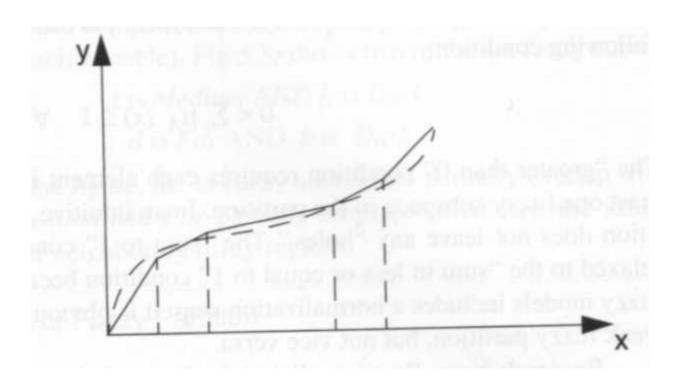
Fuzzy partition

• Generalizes classical partition so that the transition from one subspace into a neighbor one is smooth.



Piecewise linear approximation

• A nonlinear global model can often be approximated by a set of linear local models.



Mapping of fuzzy space to local model

• General form

IF
$$\hat{x}$$
 is in FS_i THEN $y_j = LM_i(\hat{x})$

• Four different types of local model

- Crisp constant

IF
$$x_2$$
 is Small THEN $y = 4.5$.

- Fuzzy constant IF x is Small THEN y is Medium.

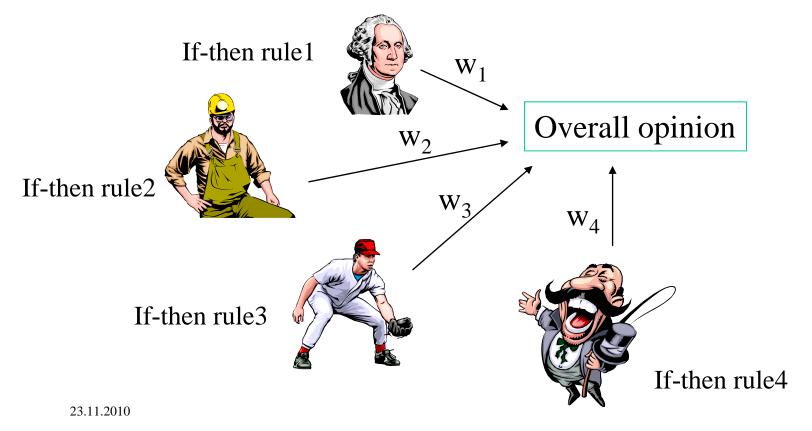
Linear model

IF x is small AND x_2 is Large THEN $y = 2x_1 + 5x_2 + 3$.

– Nonlinear model

Fusion of local models through interpolative reasoning

• Interpolative reasoning

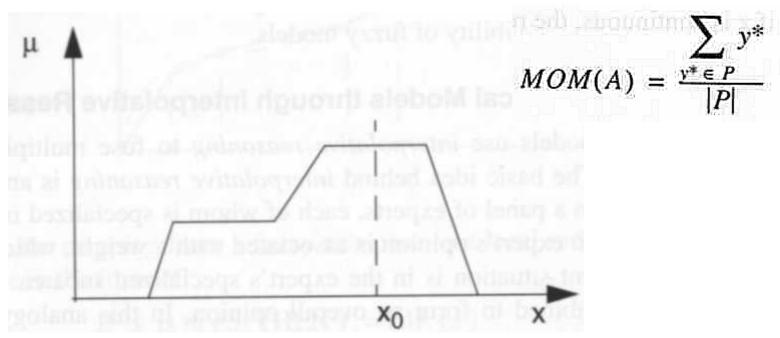


Interpret a possibility distribution

- Linguistic approximation
 - A qualitative interpretation
- Defuzzification
 - A quantitative summary
 - Mean of maximum (MOM)
 - Center of area (COA)
 - The height method

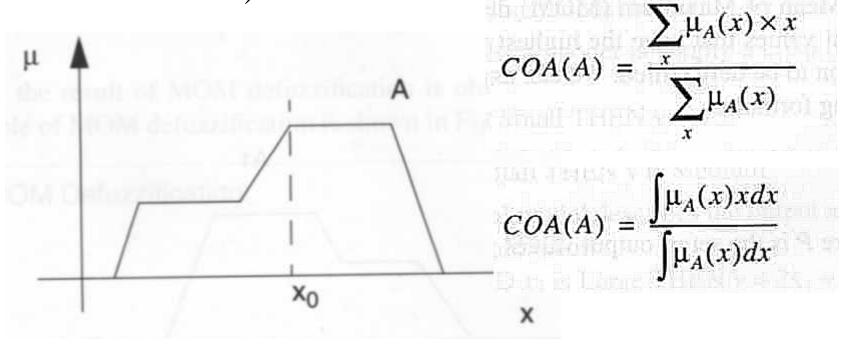
Mean of maximum (MOM)

• Calculates the average of those output values that have the highest possibility degrees



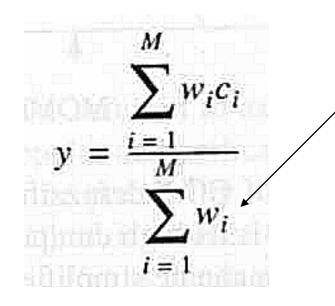
Center of area (COA)

• Calculate the center-of-gravity (the weighted sum of the results)



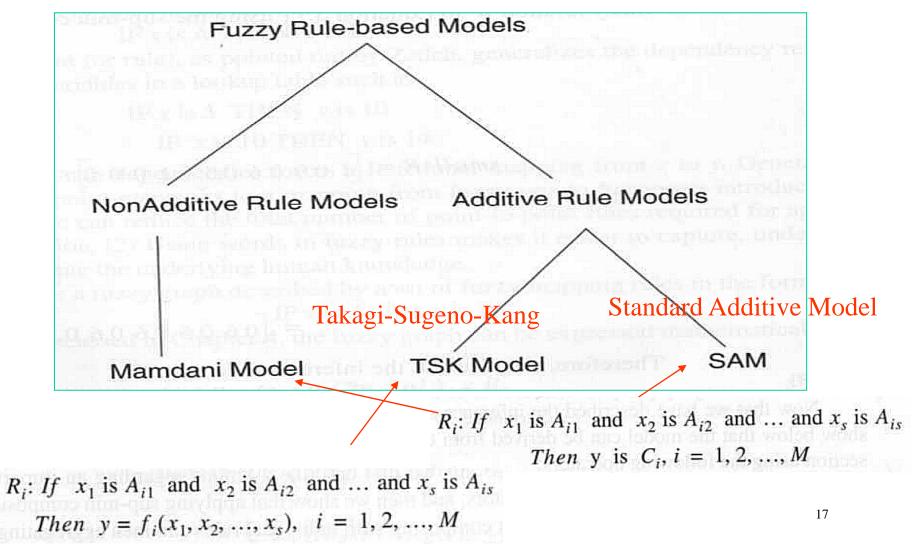
The height method

- 1. Convert the consequent membership function C_i into crisp consequent $y = c_i$
- 2. Apply the centroid defuzzification



, w_i is the degree to which the *i*th rule matches the input data

Fuzzy rule-based models



If *speed* is med and *distance* is small then force is negative If *speed* is zero and *distance* is large then force is positive

Mamdani model

Linguistic rules R_i : IF x_1 is A_{i1} and ... and x_r is A_{ir} THEN y is C_i Input form x_1 is A'_1 , x_2 is A'_2 , ..., x_r is A'_r output membership of rule i $\mu_{C'_i}(y) = (\alpha_{i1} \land \alpha_{i2} \land ... \land \alpha_{in}) \land \mu_{C_i}(y)$ Matching degree of rule i, condition j $\alpha_{ij} = \sup_{x_j} (\mu_{A'_j}(x_j) \land \mu_{A_{ij}}(x_j))$

Aggregation of outputs from all rules

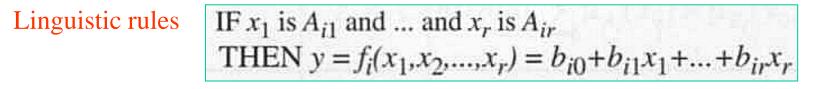
$$\mu_{C}(y) = \max\{\mu_{C'_{1}}(y), \mu_{C'_{2}}(y), ..., \mu_{C'_{L}}(y)\}\$$

23.11.2010

. . .

TSK model

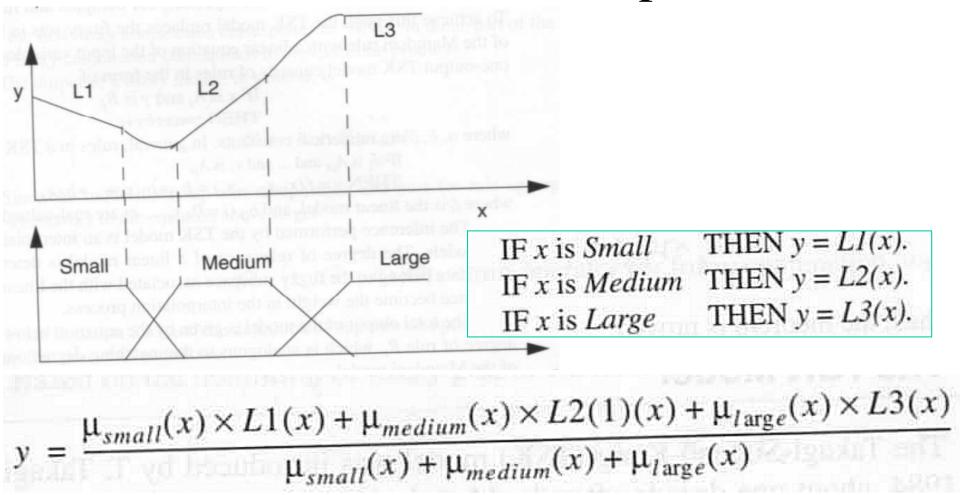
To reduce the number of rules



output

$$y = \frac{\sum_{i=1}^{L} \alpha_i f_i(x_1, x_2, ..., x_r)}{\sum_{i=1}^{L} \alpha_i} = \frac{\sum_{i=1}^{L} \alpha_i (b_{i0} + b_{i1}x_1 + ... + b_{ir}x_r)}{\sum_{i=1}^{L} \alpha_i}$$
$$\alpha_i = \min(\mu_{A_{i1}}(a_1), \mu_{A_{i2}}(a_2), ..., \mu_{A_{ir}}(a_r))$$

TSK model (example)



23.11.2010

Standard Additive Model

Linguistic rules
$$R_{i}: IF x_{1} \text{ is } A_{i1} \text{ and } \dots \text{ and } x_{r} \text{ is } A_{ir} \text{ THEN } y \text{ is } C_{i}$$
Output $z = Centroid\left(\sum_{i} \mu_{A_{i}}(x_{0}) \times \mu_{B_{i}}(y_{0}) \times \mu_{C_{i}}(z)\right)$

$$= \frac{\sum_{i=1}^{n} (\mu_{A_{i}}(x_{0}) \times \mu_{B_{i}}(y_{0})) \times A_{i} \times g_{i}}{\sum_{i=1}^{n} (\mu_{A_{i}}(x_{0}) \times \mu_{B_{i}}(y_{0})) \times A_{i}}$$

$$A_{i} = \int \mu_{C_{i}}(z) dz$$

$$g_{i} = \frac{\int z \times \mu_{C_{i}}(z) dz}{\int \mu_{C_{i}}(z) dz}$$

 A_i is the area under the *i*th. rule's conclusion C_i and g_i is the centroid of C_i

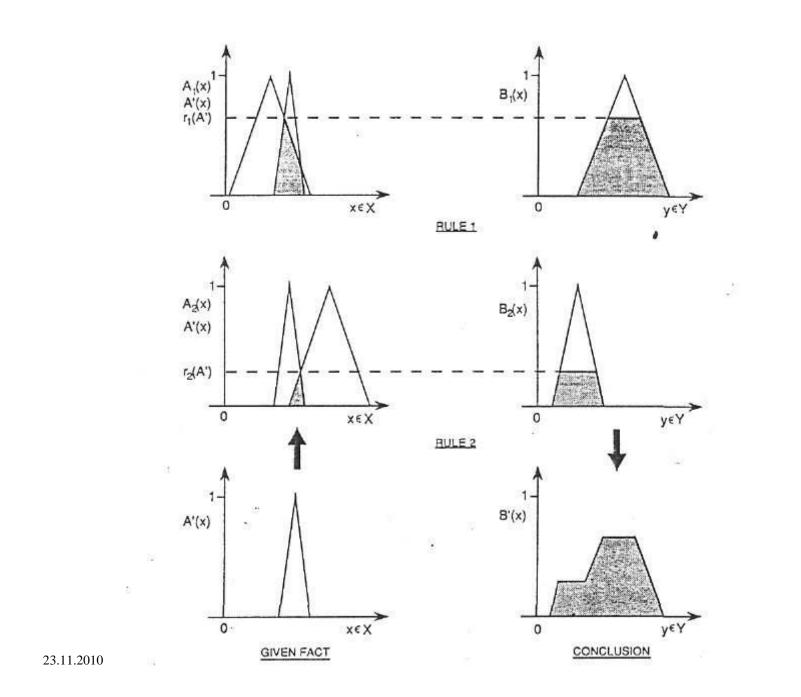
Comparison of SAM and Mamdani

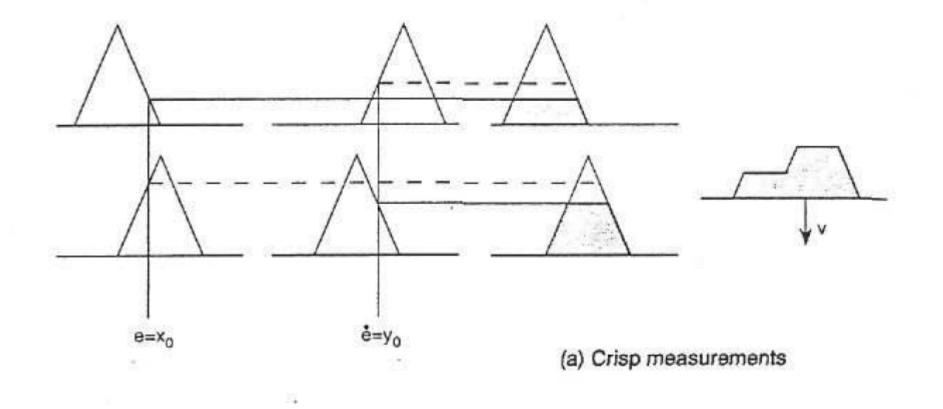
	SAM	Mamdani
inputs	crisp	Crisp & fuzzy
Composition operator	scaling	Clipping (min)
Fusion method	addition	max
Defuzzification	Centroids	Not insist

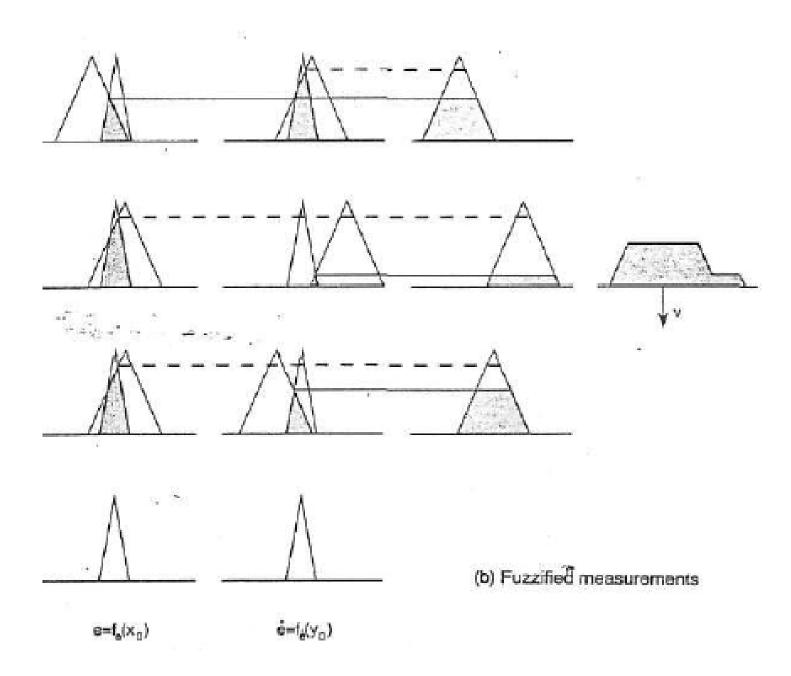
Multiconditional Approximate Reasoning

100		
	Rule 1:	If \mathfrak{X} is A_1 , then \mathcal{Y} is B_1
	Rule 2:	If X is A_2 , then Y is B_2
	Rule n :	If X is A_n , then Y is B_n
	Fact :	\mathfrak{X} is A' .
	Conclusion :	\mathcal{Y} is B'

$R(x, y) = \sup \min[A_j(x), B_j(y)]$ ieN" Step 1. $r_j(A') = h(A' \cap A_j)$ Step 2. $B'(y) = \sup \min[r_j(A'), B_j(y)]$ j∈N_n







23.11.2010

27