### Fuzzy logic

#### •Broad sense

a system of concepts, principles, and method for dealing with modes of reasoning that are approximate rather than exact.

#### •Narrow sense

A generalization of the various multivalued logics

#### Multivalued logics

- Take into account the uncertainty of truth values
- Three-valued logics

| р   | $\neg p$ |
|-----|----------|
| 0   | 1        |
| 1/2 | 1/2      |
| 1   | 0        |

• *n*-valued logics

$$T_n = \left\{ \frac{0}{n-1}, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, \frac{n-1}{n-1} \right\}$$

fuzzy database modeling

## Connectives of some three-valued logics

| a             | Ь  |    |               |               | icz<br>⇔      | A I  | Boc<br>V      | hva<br>⇒      | r<br>⇔        | ^             |               | ene<br>⇒      | ⇔             |      |               | rtin<br>⇒     |               | 1   |    | enba<br>⇒ |     |
|---------------|----|----|---------------|---------------|---------------|------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------|---------------|---------------|---------------|-----|----|-----------|-----|
| 0             | 0  | 0  | 0             | 1             | 1             | 0    | 0             | 1             | 1             | 0             | 0             | 1             | 1             | 0    | 0             | 1             | 1             | 0   | 0  | 1         | 1   |
| 0             | 12 | 0  | $\frac{1}{2}$ | 1             | $\frac{1}{2}$ | 12   | $\frac{1}{2}$ | $\frac{1}{2}$ | 12            | 0             | $\frac{1}{2}$ | 1             | 1/2           | 0    | $\frac{1}{2}$ | 1             | 0             | 0   | 12 | 1         | 1/2 |
| 0             | 1  | 0  | 1             | 1             | 0             | 0    | 1             | 1             | 0             | 0             | 1             | 1             | 0             | 0    | 1             | 1             | 0             | 0   | 1  | 1         | 0   |
| $\frac{1}{2}$ | 0  | 0  | $\frac{1}{2}$ | $\frac{1}{2}$ | 12            | 12   | $\frac{1}{2}$ | 12            | 12            | 0             | $\frac{1}{2}$ | $\frac{1}{2}$ | 12            | 0    | $\frac{1}{2}$ | 0             | 0             | 0   | 12 | 1/2       | 12  |
| $\frac{1}{2}$ | 12 | 12 | $\frac{1}{2}$ | 1             | 1             | 1 12 | $\frac{1}{2}$ | $\frac{1}{2}$ | 12            | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 1 1  | $\frac{1}{2}$ | 1             | 1             | 1 2 | 12 | 1         | 1   |
| $\frac{1}{2}$ | 1  | 12 | 1             | 1             | 12            | 12   | $\frac{1}{2}$ | $\frac{1}{2}$ | 12            | 12            | 1             | 1             | $\frac{1}{2}$ | 1 2  | 1             | 1             | $\frac{1}{2}$ | 1 2 | 1  | 1         | 1/2 |
| 1             | 0  | 0  | 1             | 0             | 0             | 0    | 1             | 0             | 0             | 0             | 1             | 0             | 0             | 0    | 1             | 0             | 0             | 0   | 1  | 0         | 0   |
| 1             | 12 | 12 | 1             | $\frac{1}{2}$ | $\frac{1}{2}$ | 12   | 12            | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 1             | $\frac{1}{2}$ | $\frac{1}{2}$ | 1 12 | 1             | $\frac{1}{2}$ | $\frac{1}{2}$ | 12  | 1  | 12        | 12  |
| 1             | 1  | 1  | 1             | 1             | 1             | 1    | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1    | 1             | 1             | 1             | 1   | 1  | 1         | 1   |

### Approximate reasoning

Old coins are usually rare collectibles Rare collectibles are expensive

: Old coins are usually expensive

- Types of fuzzy linguistic terms
  - Fuzzy predicates: tall, young, small, median
  - Fuzzy truth values: true, false, very true
  - Fuzzy probabilities: likely, unlikely, very likely
  - Fuzzy quantifiers: many, few, most

## Fuzzy propositions

- Example:
  - Mount Washington is a dangerous mountain
  - 'Mount Washington is a dangerous mountain' is true
- Conditional propositions

Qualified proposition

- assertions that are in conditional if-then form
- Example: if Tina is young, then John is old
- Qualified propositions
  - Propositions that are asserted to be simply true.

# Unconditional and unqualified propositions The temperature

• Propositional form

 $-p:\chi$  is A

 $\chi$  is a variable

A is some property or predicate p:'  $\chi$  is A' is true

• 
$$T(p_x)$$
 = the degree of truth of  $p_x$   
-  $p_x$ :  $\chi = x$  is A

The degree of *x* belong to  $\chi$ 

 $T(p_x) = A(x)$ 

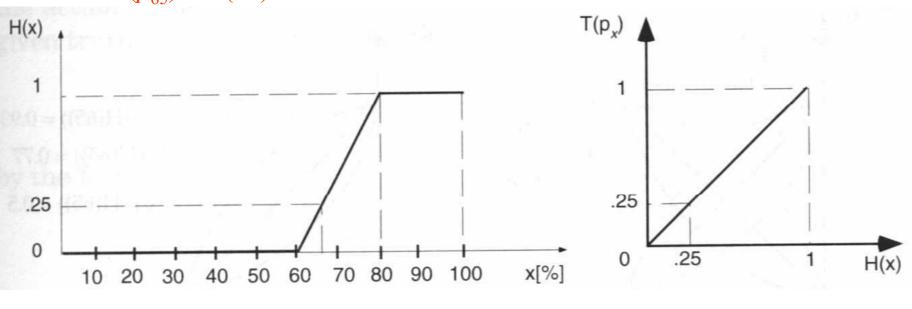
°C is high

### Example

 $p_{65}$ : Humidity of 65% is high

The degree of  $p_{65}$  is true is T( $p_{65}$ ) = H(65) =0.25  $T(p_x) = H(x)$ 

The degree of *x* belong to  $\chi$ 



12.11.2010

fuzzy database modeling

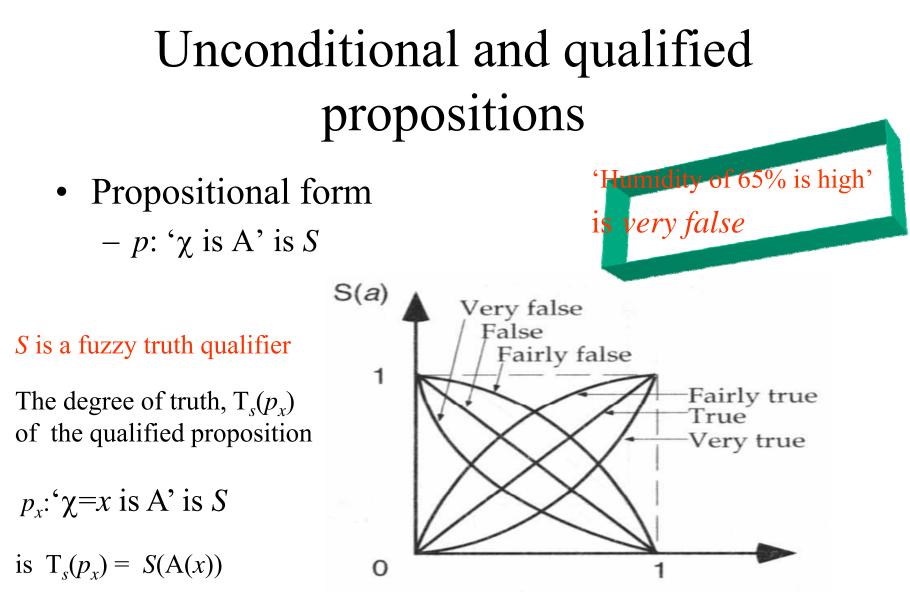
7

#### example

•  $p_{65}$ : 'Humidity of 65% is high' is very true



The degree of truth of  $p_{65}$  is  $T_s(p_{65}) = S(A(x)) = S(0.25) = 0.125$ 

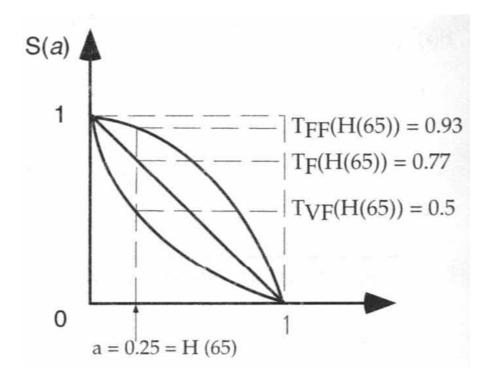


fuzzy database modeling

12.11.2010

#### example

•  $p_{65}$ : 'Humidity of 65% is high' is very false



The degree of truth of  $p_{65}$  is  $T_s(p_{65}) = S(A(x)) = S(0.25) = 0.5$ 



# Conditional and unqualified propositions

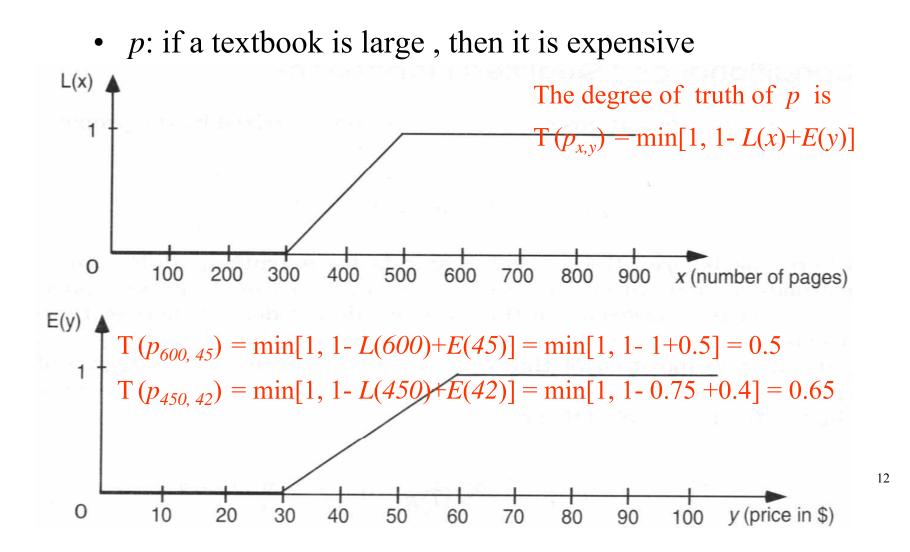
- Propositional form  $\chi$  is A  $\gamma$  is B
  - -p: if  $\chi$  is A, then  $\gamma$  is B
  - $-p_{x,y}$ : 'if A(x), then B(y)' is true
  - Fuzzy implication  $A(x) \Rightarrow B(y)$
- The degree of truth

$$- T(p_{x,y}) = I[A(x), B(y)] = \min[1, 1 - A(x) + B(y)]$$

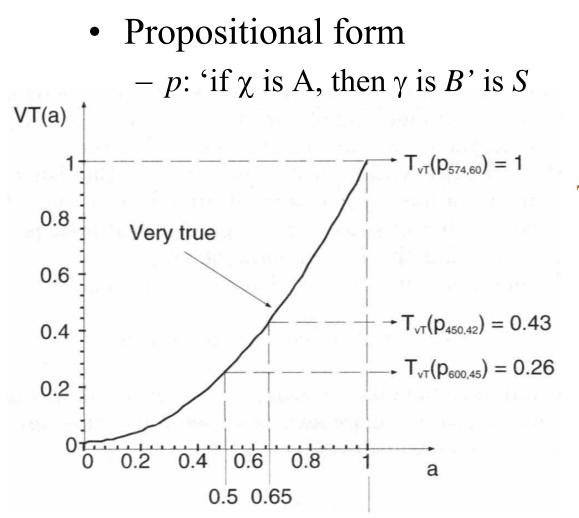
Lukasiewicz implication



#### example



## Conditional and qualified propositions





The degree of truth  $T_s(p_{x,y}) = S[T(p_{x,y})]$ 

13

#### Fuzzy quantifiers Bazı (En az bir tane var)

Her <

- Two quantifiers of predicate logic
  - Universal quantifier: all,  $\forall$
  - Existential quantifier: *there exist*,  $\exists$
- Fuzzy quantifiers
  - Absolute quantifiers
    - About a dozen, at most about 10, at least about 100
    - About 20 hotels are in close proximity to the center of the city
  - Relative quantifiers
    - Most, almost all, about half, about 20%
    - Almost all hotels are in close proximity to the center of the city

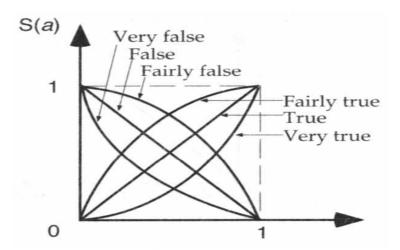
All snakes are reptiles  $(\forall x) (Sx \Rightarrow Rx)$ Some snakes are poisonous  $(\exists x) (Sx \land Px)$ Almost all snakes are poisonous

### Linguistic hedges

- Special linguistic terms by which other linguistic terms are modified.
  - Very, more ,less, fairly, extremely
- Modifier

- HA(x) = 
$$h(A(x))$$
  
-  $h(a) = a^{1/2}, a^2, a^3, ...$   
Weak modifier, fairly  
strong modifier, very  
Very strong modifier, very very

All mountains are steep Almost All mountains are steep



### Example

- Propositions
  - p<sub>1</sub>: John is young
  - p<sub>2</sub>: John is very young
  - p<sub>3</sub>: John is fairly young
- Assume John is 26 years old, the degree of truth of the propositions are
  - Young(26) = 0.8
  - *Very* young(26) =  $0.8^2 = 0.64$  S

Strong assertion is less true

- *Fairly young*  $(26) = 0.8^{1/2} = 0.89$ 

#### Approximately reasoning

- Deductive reasoning
  - Use valid argument form
- Approximately reasoning
  - Dealing with reasoning under fuzzy environment

Modus Ponens (MP)  
1. 
$$p \Rightarrow q$$
  
2.  $p$   
 $\therefore q$ 

 $[(p \Rightarrow q) \land p] \Rightarrow q$ 

| Rule:       | If a book is large, then it is expensive |                                        |  |  |  |  |  |  |
|-------------|------------------------------------------|----------------------------------------|--|--|--|--|--|--|
| Fact:       | Book <i>x</i> is fairly large            | mantıkta;                              |  |  |  |  |  |  |
| Conclusion: | Book <i>x</i> is fairly expensive        | "a olursa l<br>"a olmuştı<br>önərmələr |  |  |  |  |  |  |

mantıkta; "a olursa b olur." "a olmuştur." önermelerinden "b de olmuştur." sonucunu çıkarmaya verilen isim.

#### Generalized modus ponens

| Rule: | If $X$ is $A$ , then $Y$ is $B$ |
|-------|---------------------------------|
| Fact: | X is $A'$                       |

Conclusion:  $\gamma$  is B'

 $B'(y) = \sup_{x \in X} \min \left(A'(x), I(A(x), B(y))\right)$