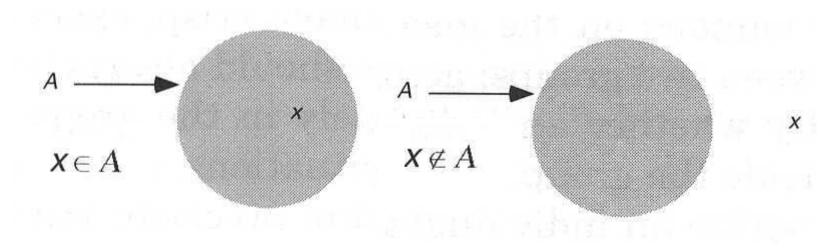
Classical Set Theory



Basic concepts

- Set: a collection of items
- To Represent sets

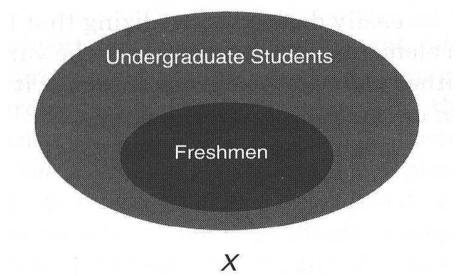
- The set C is composed of elements *x*
- List method $A=\{a, b, c\}$ Every x has property P
- Rule method $C = \{ x | P(x) \}$
- Family of sets $\{A_i \mid i \in I\}$ *i*: index I: index set
- Universal set X and empty set \emptyset

Set Inclusion

- $A \subseteq B : x \in A$ implies that $x \in B$ A is a subset of B
- $A = B : A \subseteq B$ and $B \subseteq A$
- $A \subset B : A \subseteq B$ and $A \neq B$

A and B are equal set

A is a proper subset of B



07.10.2010

Power set

• All the possible subsets of a given set X is call the power set of X, denoted by $\mathcal{P}(X) = \{A | A \subseteq X\}$

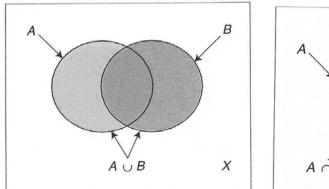
•
$$|\mathcal{P}(\mathbf{X})| = 2^n$$
 when $|\mathbf{X}| = n$

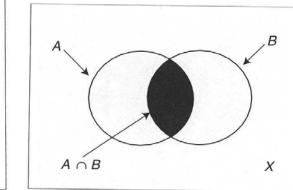
•
$$X = \{a, b, c\}$$

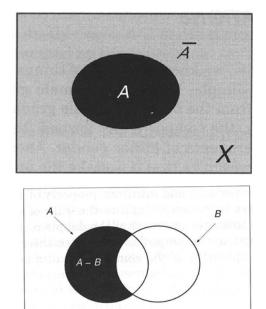
 $\mathcal{P}(X) = \{\emptyset, a, b, c, \{a, b\}, \{b, c\}, \{a, c\}, X\}$

Set Operations

- Complement $\overline{A} = \{x \mid x \in X \text{ and } x \notin A\}$
- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- difference $A B = \{x \mid x \in A \text{ and } x \notin B\}$







Х

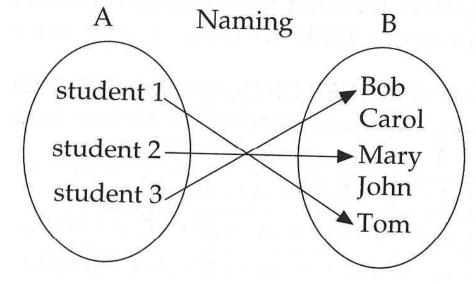
Basic properties of set operations

Involution	$\overline{A} = A$
Commutativity	$A \cap B = B \cap A, A \cup B = B \cup A$
Associativity	$A \cap (B \cap C) = (A \cap B) \cap C, A \cup (B \cup C) = (A \cup B) \cup C$
Distributivity	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Idempotence	$A \cap A = A, A \cup A = A$
Absorption	$A \cap (A \cup B) = A, A \cup (A \cap B) = A,$
Absorption by \varnothing and X	$A \cup X = X, A \cap \emptyset = \emptyset$
Identity	$A \cap X = A, A \cup \emptyset = A$
Law of contradiction	$A \cap \overline{A} = \emptyset$
Law of excluded middle	$A \cup \overline{A} = X$
De Morgan laws	$\overline{A \cap B} = \overline{A} \cup \overline{B}, \overline{A \cup B} = \overline{A} \cap \overline{B}$

6

Function

- A function from a set A to a set B is denoted by
 f: A→B
 - Onto
 - Many to one
 - One-to-one



Characteristic function (Belirtev)

• Let A be any subset of X, the characteristic function of A, denoted by χ , is defined by

$$\chi_A(x) = \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ if } x \notin A \end{cases}$$

Characteristic function of the set of real numbers from 5 to 10 XA $\chi_A(x) = \begin{cases} 1 & \text{if } 5 \le x \le 10 \\ 0 & \text{otherwise} \end{cases}$

0

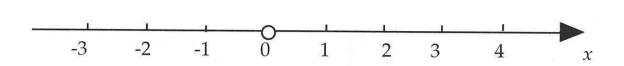
07.10.2010

5

10

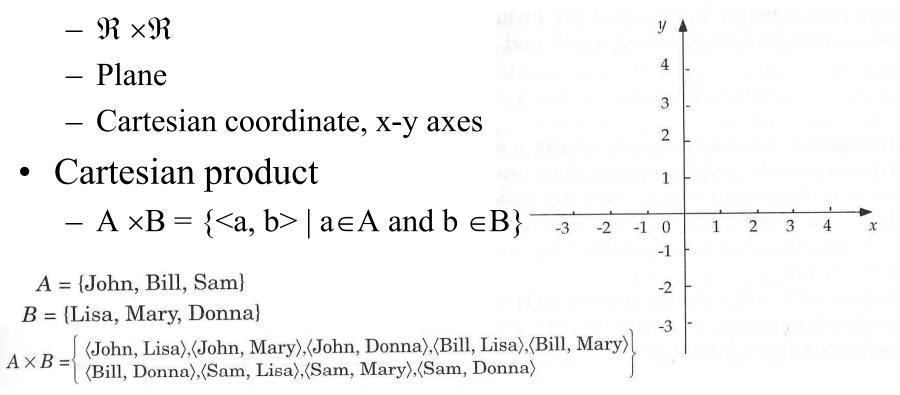
Real numbers

- Total ordering: $a \le b$
- Real axis: the set of real number \Re (*x*-axis)
- Interval: [a,b], (a,b), (a,b]
- One-dimensional Euclidean space



two-dimensional Euclidean space

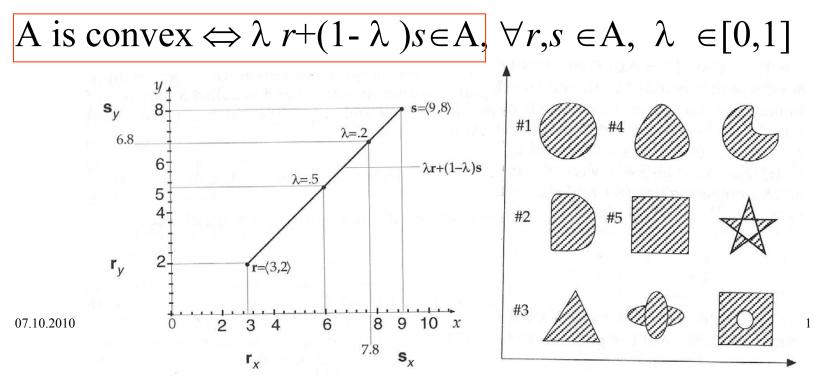
• The Cartesian product of two real number



07.10.2010

Convexity (Dışbükey)

• A subset of Euclidean space A is convex, if line segment between all pairs of points in the set A are included in the set.



Partition (Bölüntü)

- Given a nonempty set A, a family of pairwise disjoint subsets of A is called a partition of A, denoted by Π(A), iff the union of these subsets yields the set A.
- $\Pi(A) = \{A_i \mid i \in I, \emptyset \neq A_i \subseteq A\} \Leftrightarrow A_i \cap A_j = \emptyset$ for each pair $i \neq j(i, j \in I)$ and $\bigcup_{i \in I} A_i = A$
- Blocks

